The effect of percutaneous transluminal angioplasty of superficial femoral artery on pulse wave features.

Comput Biol Med

Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland; Finnish Cardiovascular Research Center Tampere, Surgery, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.

Published: May 2018

We aimed to analyze the effects of percutaneous transluminal angioplasty (PTA) of the superficial femoral artery (SFA) on arterial pulse waves (PWs). Altogether 24 subjects i.e. 48 lower limbs were examined including 26 treated lower limbs having abnormal ankle-to-brachial pressure index (ABI) (ABI<0.9 or ABI>1.3) and 22 non-treated lower limbs. The measurements were conducted in pre-, peri- and post-treatment phases as well as in follow-up visit after 1 month. Both ABI and toe pressures measured by standard equipment were used as reference values. PW-derived parameters include ratios of different peaks of the PW and time differences between them as well as aging index. Both treated and non-treated limbs were compared in pre- and post-treatment as well as follow-up visit conditions. The results were evaluated in terms of statistical tests, Bland-Altman-plots, free-marginal multirater κ-analysis and multiple linear regression analysis. PTA was found to cause small changes to the studied PW-derived parameters of the treated limb which were observed immediately after the treatment, but the changes were more pronounced in the follow-up visit. In addition, we observed that the endovascular instrumentation itself does not cause significant changes to the PW-derived parameters. The results show that PW-analysis could be a useful tool for monitoring the treatment-effect of the PTA. However, because the pre-treatment differences of the treated and non-treated limb were small, further studies with subjects having no arterial diseases are required. The study demonstrates the potential of the PW analysis in monitoring vascular abnormalities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2018.04.003DOI Listing

Publication Analysis

Top Keywords

lower limbs
12
follow-up visit
12
pw-derived parameters
12
percutaneous transluminal
8
transluminal angioplasty
8
superficial femoral
8
femoral artery
8
well follow-up
8
treated non-treated
8
angioplasty superficial
4

Similar Publications

Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability.

View Article and Find Full Text PDF

Review on Portable-Powered Lower Limb Exoskeletons.

Sensors (Basel)

December 2024

Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.

Advancements in science and technology have driven the growing use of robots in daily life, with Portable-Powered Lower Limb Exoskeletons (PPLLEs) emerging as a key innovation. The selection of mechanisms, control strategies, and sensors directly influences the overall performance of the exoskeletons, making it a crucial consideration for research and development. This review examines the current state of PPLLE research, focusing on the aspects of mechanisms, control strategies, and sensors.

View Article and Find Full Text PDF

The continuous, automated monitoring of sensor-based data for walking capacity and mobility has expanded gait analysis applications beyond controlled laboratory settings to real-world, everyday environments facilitated by the development of portable, cost-efficient wearable sensors. In particular, the integration of Inertial Measurement Units (IMUs) into smart shoes has proven effective for capturing detailed foot movements and spatiotemporal gait characteristics. While IMUs enable accurate foot trajectory estimation through the double integration of acceleration data, challenges such as drift errors necessitate robust correction techniques to ensure reliable performance.

View Article and Find Full Text PDF

Vertical Jump Height Estimation Using Low-Sampling IMU in Countermovement Jumps: A Feasible Alternative to Motion Capture and Force Platforms.

Sensors (Basel)

December 2024

Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy.

Vertical jump height from a countermovement jump is a widespread metric to assess the lower limb functionality. Motion capture systems and force platforms are considered gold standards to estimate vertical jump height; however, their use in ecological settings is limited. This study aimed to evaluate the feasibility of low-sampling-rate inertial measurement units as an alternative to the gold standard systems.

View Article and Find Full Text PDF

Berbamine Promotes the Repair of Lower Limb Muscle Damage in Chronic Limb-Threatening Ischemia by Inhibiting Local Inflammation and NF-κB Nuclear Translocation.

Pharmaceuticals (Basel)

November 2024

Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing 210008, China.

: Chronic Limb-Threatening Ischemia (CLTI) is a chronic limb ischemic disease caused by vascular lesions, characterized by pain, ulcers, and gangrene, which can be life-threatening in severe cases. The objective of this study is to explore whether Berbamine (BBM) can protect against and repair ischemic muscle tissue in the lower limbs; : Using a mouse hindlimb ischemia (HLI) model, 36 C57BL6 mice were divided into sham, HLI, and HLI+BBM treatment groups. : Our findings indicate that BBM can restore motor function and muscle tissue pathology in mice, potentially by inhibiting the nuclear translocation of nuclear factor kappa-B (NF-κB), thereby alleviating tissue inflammation caused by chronic ischemia, reducing muscle cell apoptosis, inhibiting M1 macrophage polarization, and promoting angiogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!