A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biodegradation of oil spill dispersant surfactants in cold seawater. | LitMetric

Biodegradation of oil spill dispersant surfactants in cold seawater.

Chemosphere

SINTEF Ocean AS, Dept. of Environment and New Resources, Norway.

Published: August 2018

While biodegradation of chemically dispersed oil has been well documented, only a few studies have focused on the degradation of the dispersant compounds themselves. The objective of this study was to determine the biodegradation of dispersant surfactants in cold seawater, relevant for deep sea or Arctic conditions. Biotransformation of the surfactants dioctyl-sodium sulfosuccinate (DOSS), Tween 80, Tween 85, and α/β-ethylhexylsulfosuccinate (EHSS, expected DOSS hydrolysis product) in the commercial dispersants Corexit 9500, Dasic Slickgone NS and Finasol OSR52 were determined. The biotransformation studies of the surfactants were performed in natural seawater at 5 °C over a period of 54 days without oil present. The surfactants were tested at concentrations of 1, 5, and 50 mg/L, the lower concentration being as close as possible to expected field concentrations. Experiments with dispersants concentrations of 1 mg/L resulted in rapid biotransformation of Tween 80 and Tween 85, with depletion after 8 days, while DOSS showed rapid biotransformation after a lag period of 16 days. The degradation half-life of DOSS increased from 4.1 days to >500 days as Corexit 9500 concentrations went from 1 mg/L to 50 mg/L, emphasizing the importance of performing experiments at dispersant concentrations as close as possible to environmentally relevant concentrations. EHSS showed limited degradation compared to other surfactants. This study shows that the surfactants DOSS, Tween 80 and Tween 85 in the three chemical dispersants studied are biodegradable in cold seawater, particularly in environmentally relevant concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.04.051DOI Listing

Publication Analysis

Top Keywords

cold seawater
12
tween tween
12
dispersant surfactants
8
surfactants cold
8
doss tween
8
corexit 9500
8
period days
8
concentrations 1 mg/l
8
rapid biotransformation
8
environmentally relevant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!