The aim of the study was to evaluate sensitivity and potential applications of selected biomarkers in phytoremediation under complex heavy metal contamination in Sinapis alba L., Robinia pseudoacacia L. and Lupinus luteus L as a potential tools in effective phytoremediation management. The toxicity assessment was conducted using selected measurement endpoints, both classical and advanced, i.e., germination index, roots length, guaiacol peroxidase activity (GPX), chlorophyll and protein content, the amount of total phenolic compounds (TPC) and level of expression of one of the ribulose-bisphosphate carboxylase genes (rbcL). Moreover, the influence of organic additives: cattle, horse manure, and vermicompost on lowering plant abiotic stress caused by complex heavy metal contamination was studied to assess the possible applications of selected stress markers in large scale phytoremediation planning. The results demonstrated the beneficial effects of selected soil additives on plant development. The 5% difference in the quantity of applied amendment caused statistically significant differences in GPX, TPC, chlorophyll content and expression level of rbcL. Among all endpoints, GPX activity, chlorophyll, and phenolic compounds content, as well as the expression of rbcL, turned out to be the most reliable assays for determination of the type and dosage of selected soil amendments (fertilizers) in the assisted phytoremediation process. Selected markers can be used to achieve the desired level of plant abiotic stress and consequently photosynthesis efficiency and CO sequestration. The results showed, that presented assays can be used in different taxonomical groups such as Fabaceae for planning effective phytoremediation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.04.052 | DOI Listing |
Front Microbiol
December 2024
Biological and Food Engineering, Huanghuai University, Zhumadian, China.
Macroalgae growth depends on biologically available nitrogen, such as ammonium and nitrate, making nitrogen the most common growth-limiting factor for macroalgae. However, the role of surface microorganisms in promoting nitrogen transformation and improving nitrogen utilization by macroalgae remains unclear. In this study, 228 bacterial strains were isolated from the surface of , and high-throughput sequencing revealed significant shifts in the composition of surface bacterial communities under different nitrogen concentrations.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.
Photorespiration is a complex metabolic process linked to primary plant metabolism and influenced by environmental factors, yet its regulation remains poorly understood. In this study, we identified the asprs3-1 mutant, which displays a photorespiratory phenotype with leaf chlorosis, stunted growth, and diminished photosynthesis under ambient CO, but normal growth under elevated CO conditions. Map-based cloning and genetic complementation identified AspRS3 as the mutant gene, encoding an aspartyl-tRNA synthetase.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India.
Heat stress impacts photosynthesis and carbohydrate metabolism, challenging food security. To comprehend the mechanisms of thermotolerance, we examined the role of ethylene (ET) and hydrogen sulfide (HS) with or without sulfur (S) in rice (Oryza sativa L.).
View Article and Find Full Text PDFPlant Commun
December 2024
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. Electronic address:
Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) is the central enzyme for converting atmospheric CO into organic molecules, playing a crucial role in the global carbon cycle. In cyanobacteria and some chemoautotrophs, Rubisco complexes, along with carbonic anhydrase, are enclosed within specific proteinaceous microcompartments, known as carboxysomes. The polyhedral carboxysome shell ensures a dense packaging of Rubisco and creates a high-CO internal environment to facilitate the fixation of CO.
View Article and Find Full Text PDFEco Environ Health
September 2024
State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
The expanding production of engineered nanomaterials (ENMs) can eventually cause their increased release into and presence in aquatic ecosystems, potentially threatening the health of aquatic organisms and the stability of the ecological environment. Generally, ENMs are repeatedly released into real-world aquatic environments in relatively low concentrations, potentially affecting photosynthesis in primary producers such as algae. However, knowledge regarding the effects of repeated exposure to ENMs on algal photosynthesis is still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!