AI Article Synopsis

  • Quercetin glycosides, particularly isoquercetin, have neuroprotective, cardioprotective, and anti-diabetic properties, though their mechanisms on insulin signaling and carbohydrate metabolism are not fully understood.
  • Male Wistar rats were induced with diabetes using streptozotocin and then treated with different doses of isoquercetin, revealing that it significantly improved blood sugar levels and insulin regulation.
  • The study suggests that isoquercetin may serve as a viable treatment option for diabetes mellitus, showing results comparable to the standard drug glibenclamide.

Article Abstract

Among the foremost common flavonoids within the human diet, quercetin glycosides possess neuroprotective, cardioprotective, anti-oxidative, chemopreventive, and anti-allergic properties. Isoquercetin is one such promising candidate with anti-diabetic potential. However, complete studies of its molecular action on insulin signaling pathway and carbohydrate metabolizing enzymes remain unclear. Hence, we have designed this study to accumulate the experimental evidence in support of anti-diabetic effects of isoquercetin. Male albino Wistar rats were divided into seven groups. Rats (Groups 3-7) were administered a single intraperitoneal injection of streptozotocin (STZ; 40 mg/kg b.w) to induce diabetes mellitus. As an extension, STZ rats received isoquercetin at three different doses (20, 40 and 80 mg/kg b.w), and Group 7 rats received glibenclamide (standard drug) (600 μg/kg b.w). The results showed that STZ exaggerated blood sugar, decreased insulin, altered metabolizing enzymes, and impaired the mRNA expression of insulin signaling genes and carbohydrate metabolizing enzyme genes. Supplementation with isoquercetin significantly normalized blood sugar levels, insulin and regulated the mRNA expression of insulin signaling genes and carbohydrate metabolizing enzyme genes. The results achieved with isoquercetin are similar to that of standard drug glibenclamide. The findings suggest isoquercetin could be a possible therapeutic agent for treating diabetes mellitus in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2018.04.015DOI Listing

Publication Analysis

Top Keywords

insulin signaling
16
carbohydrate metabolizing
12
signaling pathway
8
metabolizing enzymes
8
diabetes mellitus
8
rats received
8
standard drug
8
blood sugar
8
mrna expression
8
expression insulin
8

Similar Publications

Insights into the progressive impact of high-fat-diet induced insulin resistance on skeletal muscle and myocardium: A comprehensive study on C57BL6 mice.

PLoS One

January 2025

Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.

This study aims to provide a theoretical foundation for the future management of diabetes at various stages induced by a high-fat diet. Specifically, it seeks to determine the appropriate pharmacological interventions for each phase of diabetes development and the targeted therapeutic directions at different stages of diabetes progression. This investigation employed C57BL6 mice as experimental subjects, successfully establishing an insulin resistance model through a 12-week high-fat diet.

View Article and Find Full Text PDF

Multi Targeted Activity of Cocculus hirsutus through Modulation of DPP-IV and PTP-1B Leading to Enhancement of Glucose Uptake and Attenuation of Lipid Accumulation.

Appl Biochem Biotechnol

January 2025

Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.

Multi-targeted therapies are gaining attention in the management of multifactorial diseases due to their poly pharmacology, enhanced potency and reduced toxicity. Metabolic disorders like Type 2 diabetes mellitus (T2DM) and obesity necessitate multi-targeted therapy to improve insulin sensitivity, regulate glucose homeostasis and support weight loss. Medicinal plants rich in bioactive compounds exhibit multi-targetted action with minimal side effects.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM.

View Article and Find Full Text PDF

This study aimed to investigate the differential expression of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in relation to the Toll-like receptor (TLR)/nuclear factor κB (NF-κB) signaling pathway in an obese rat model. A total of 200 8-week-old male Wistar rats were randomly assigned to a control group (Ctrl, = 40) and an observation group (Obs, = 160), with obesity induced through a high-fat diet. Following modeling, the Obs group was further divided into a model group, a PI3K/AKT inhibition group, a TLR/NF-κB inhibition group, and a combined PI3K/AKT + TLR/NF-κB inhibition group, with 40 rats in each.

View Article and Find Full Text PDF

Reprogramming of fibroblasts into cancer-associated fibroblasts via IGF2-mediated autophagy promotes metastasis of lung cancer cells.

iScience

December 2024

Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.

Cancer-associated fibroblasts (CAFs) are major component of stromal cells. Growing evidence suggests that CAFs promote tumor growth and metastasis; however, the reprogramming of normal fibroblasts (NFs) into CAFs by tumor cells still remains largely unknown. In this study, we found that non-small cell lung cancer (NSCLC) cells activated NFs into CAFs via autophagy induction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!