On the role of extrinsic noise in microRNA-mediated bimodal gene expression.

PLoS Comput Biol

Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.

Published: April 2018

Several studies highlighted the relevance of extrinsic noise in shaping cell decision making and differentiation in molecular networks. Bimodal distributions of gene expression levels provide experimental evidence of phenotypic differentiation, where the modes of the distribution often correspond to different physiological states of the system. We theoretically address the presence of bimodal phenotypes in the context of microRNA (miRNA)-mediated regulation. MiRNAs are small noncoding RNA molecules that downregulate the expression of their target mRNAs. The nature of this interaction is titrative and induces a threshold effect: below a given target transcription rate almost no mRNAs are free and available for translation. We investigate the effect of extrinsic noise on the system by introducing a fluctuating miRNA-transcription rate. We find that the presence of extrinsic noise favours the presence of bimodal target distributions which can be observed for a wider range of parameters compared to the case with intrinsic noise only and for lower miRNA-target interaction strength. Our results suggest that combining threshold-inducing interactions with extrinsic noise provides a simple and robust mechanism for obtaining bimodal populations without requiring fine tuning. Furthermore, we characterise the protein distribution's dependence on protein half-life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922620PMC
http://dx.doi.org/10.1371/journal.pcbi.1006063DOI Listing

Publication Analysis

Top Keywords

extrinsic noise
20
gene expression
8
presence bimodal
8
noise
6
bimodal
5
role extrinsic
4
noise microrna-mediated
4
microrna-mediated bimodal
4
bimodal gene
4
expression studies
4

Similar Publications

Initial Pose Estimation Method for Robust LiDAR-Inertial Calibration and Mapping.

Sensors (Basel)

December 2024

Department of Intelligent Systems & Robotics, Chungbuk National University, Cheongju 28644, Republic of Korea.

Handheld LiDAR scanners, which typically consist of a LiDAR sensor, Inertial Measurement Unit, and processor, enable data capture while moving, offering flexibility for various applications, including indoor and outdoor 3D mapping in fields such as architecture and civil engineering. Unlike fixed LiDAR systems, handheld devices allow data collection from different angles, but this mobility introduces challenges in data quality, particularly when initial calibration between sensors is not precise. Accurate LiDAR-IMU calibration, essential for mapping accuracy in Simultaneous Localization and Mapping applications, involves precise alignment of the sensors' extrinsic parameters.

View Article and Find Full Text PDF

Decoherence between qubits is a major bottleneck in quantum computations. Decoherence results from intrinsic quantum and thermal fluctuations as well as noise in the external fields that perform the measurement and preparation processes. With prescribed colored noise spectra for intrinsic and extrinsic noise, we present a numerical method, Quantum Accelerated Stochastic Propagator Evaluation (Q-ASPEN), to solve the time-dependent noise-averaged reduced density matrix in the presence of intrinsic and extrinsic noise.

View Article and Find Full Text PDF

Cell states are modulated by intrinsic driving forces such as gene expression noise and extrinsic signals from the tissue microenvironment. The distinction between intrinsic and extrinsic cell state determinants is essential for understanding the regulation of cell fate in tissues during development, homeostasis and disease. The rapidly growing availability of single-cell resolution spatial transcriptomics makes it possible to meet this challenge.

View Article and Find Full Text PDF

Characterizing the nonmonotonic behavior of mutual information along biochemical reaction cascades.

Phys Rev E

September 2024

Department of Physics, University of Toronto, 60 St. George Street, Ontario M5S 1A7, Canada.

Cells sense environmental signals and transmit information intracellularly through changes in the abundance of molecular components. Such molecular abundances can be measured in single cells and exhibit significant heterogeneity in clonal populations even in identical environments. Experimentally observed joint probability distributions can then be used to quantify the covariability and mutual information between molecular abundances along signaling cascades.

View Article and Find Full Text PDF

The lightness of an object is an intrinsic property that depends on its surface reflectance spectrum. The visual system estimates an object's lightness from the light reflected off its surface. However, the reflected light also depends on object extrinsic properties of the scene, such as the light source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!