Simulations Study of Single-Component and Mixed n-Alkyl-PEG Micelles.

J Phys Chem B

Department of Chemistry and Materials Science, School of Chemical Engineering , Aalto University, P.O. Box 16100, FI-00076 Aalto , Finland.

Published: May 2018

Here, we study one-component and mixed n-alkyl-poly(ethylene glycol) (C E ) micelles with varying poly(ethylene glycol) (PEG) chain lengths n using coarse-grained molecular simulations. These nonionic alkyl-PEG surfactants and their aggregates are widely used in bio and chemical technology. As expected, the simulations show that increasing the PEG chain length decreases the alkyl-PEG micelle core diameter and the aggregation number but also enhances PEG chain penetration to the core region and spreads the micelle corona. Both the core and corona density are heavily dependent on the PEG chain length and decrease with increasing PEG length. Furthermore, we find that the alkyl-PEG surfactants exhibit two distinct micellization modes: surfactants with short PEG chains as their hydrophilic heads aggregate with the PEG heads relatively extended. Their aggregation number and the PEG corona density are dictated by the core carbon density. For longer PEG chains, the PEG sterics, that is, the volume occupied by the PEG head group, becomes the critical factor limiting the aggregation. Finally, simulations of binary mixtures of alkyl-PEGs of two different PEG chain lengths show that even in the absence of core-freezing, the surfactants prefer the aggregate size of their single-component solutions with the segregation propelled via enthalpic contributions. The findings, especially as they provide a handle on the density and the density profile of the aggregates, raise attention to effective packing shape as a design factor of micellar systems, for example, drug transport, solubilization, or partitioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150674PMC
http://dx.doi.org/10.1021/acs.jpcb.8b00398DOI Listing

Publication Analysis

Top Keywords

peg chain
20
peg
12
chain lengths
8
alkyl-peg surfactants
8
increasing peg
8
chain length
8
aggregation number
8
corona density
8
peg chains
8
chain
5

Similar Publications

This study investigates the effects of homopolymer additives and kinetic traps on the self-assembly of poly(ethylene glycol)-b-poly(lactide) (PEG-PLA) block copolymer (BCP) nanostructures in aqueous environments. By using non-adsorbing PEG homopolymers to kinetically trap PEG-PLA nanostructures, we demonstrate that varying the concentration and molecular weight of the added PEG induces a reversible micelle-to-vesicle transition. This transition is primarily driven by changes in the molecular geometry of the PEG-PLA BCPs due to excluded volume screening effects.

View Article and Find Full Text PDF

Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.

View Article and Find Full Text PDF

Background And Aims: (), included in the World Health Organization's list of critical priority pathogens, is considered a serious threat to public health. The present study aims to investigate the prevalence of virulence-associated and aminoglycoside resistance genes in clinical isolates of .

Methods: This cross-sectional study was carried out on 88 clinical isolates of .

View Article and Find Full Text PDF

Effect of PEGylation on the Adsorption and Binding Strength of Plasma Proteins to Nanoparticle Surfaces.

Mol Pharm

December 2024

Department of Chemical Engineering, Dankook University, Yongin-si 16890, South Korea.

The adsorption of plasma proteins (human serum albumin, immunoglobulin γ-1, apolipoproteins A-I and E-III) onto polystyrene surfaces grafted with polyethylene glycol (PEG) at different grafting densities is simulated using an all-atom PEG model validated by comparing the conformations of isolated PEG chains with previous simulation and theoretical values. At high PEG density, the grafted PEG chains extend like brushes, while at low density, they significantly adsorb to the surface due to electrostatic attraction between polystyrene amines and PEG oxygens, forming a PEG layer much thinner than its Flory radius. Free energy calculations show that PEGylation can either increase or decrease the binding strength between proteins and surfaces, to an extent dependent on PEG density and specific proteins involved, in agreement with experiments.

View Article and Find Full Text PDF

Development of a Peptide-Based Tumor-Activated Checkpoint Inhibitor for Cancer Immunotherapy.

Acta Biomater

December 2024

Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA. Electronic address:

Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!