Excitation Modulation of Upconversion Nanoparticles for Switch-like Control of Ultraviolet Luminescence.

J Am Chem Soc

Department of Biomedical Engineering , University of Arizona, Tucson , Arizona 85721 , United States.

Published: May 2018

The ability to control ultraviolet (UV) luminescence intensity in a switch-like manner is demonstrated through the use of 980 nm excitation pulse-width modulation in NaYF:Yb,Tm upconversion nanoparticles (UNPs). Varying the ytterbium doping resulted in a single order of magnitude improvement of UV luminescence intensity. The excitation pulse-width modulation technique applied to these optimized UNPs enables 3 orders of magnitude control over UV luminescence intensity while maintaining NIR luminescence emission at 800 nm. Controlled in the switch-like manner, these UNPs can transfer their UV energy to 9,10-diphenylanthracene (DPA). Independent control of NIR luminescence and UV energy transfer through NIR excitation modulation may find applications in the development of multifunctional theranostic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b13677DOI Listing

Publication Analysis

Top Keywords

luminescence intensity
12
excitation modulation
8
upconversion nanoparticles
8
control ultraviolet
8
ultraviolet luminescence
8
switch-like manner
8
excitation pulse-width
8
pulse-width modulation
8
nir luminescence
8
luminescence
6

Similar Publications

Aiming at the construction of novel platforms with excellent performances in both circularly polarized photoluminescence (CP-PL) and electrochemiluminescence (CP-ECL), a new family of pyrenophanes with rigidly locked pyrene dimers and varied bridges has been designed and synthesized. Attributed to densely packed pyrene excimers, the resultant pyrenophanes revealed tunable bridge-dependent emission behaviors, as investigated by femtosecond time-resolved transient absorption spectroscopy. More importantly, all these planar chiral pyrenophanes display strong CP-PL with large dissymmetry factor (gPL) values up to 0.

View Article and Find Full Text PDF

Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.

View Article and Find Full Text PDF

Mechanosynthesis of fluorescent magnetic alumina for latent fingerprint detection.

J Colloid Interface Sci

January 2025

iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

A green approach towards the synthesis of both conventional and magnetic fluorescent powders for revealing latent fingerprints (FPs) is disclosed. The powders formulation is based on a biodegradable matrix and fluorescent dyes extracted from commercial felt-tip markers. Two classes of powders are described: one with a fluorescent component, and other with both fluorescent and magnetic components.

View Article and Find Full Text PDF

Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.

View Article and Find Full Text PDF

Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!