The purpose of this study was to examine the surface characteristics of bioactive glass-infiltrated zirconia specimens that underwent different hydrofluoric acid (HF) etching conditions. Specimens were classified into the following six groups: Zirconia, Zirliner, Porcelain, Bioactive glass A1, Bioactive glass A2, and Bioactive glass A3. Zirliner and porcelain were applied to fully sintered zirconia followed by heat treatment. Bioactive glass was infiltrated into presintered zirconia using a spin coating method followed by complete sintering. All the specimens were acid-etched with 10% or 20% HF, and surface roughness was measured using a profiler. The surface roughness of the zirconia group was not affected by the etching time or the concentration of the acid. The roughness of the three bioactive glass groups (A1, A2, and A3) was slightly increased up until 10 minutes of etching. After 1 hour of etching, the roughness was considerably increased. The infiltrated bioactive glass and acid etching did not affect the adhesion and proliferation of osteoblasts. This study confirmed that surface roughness was affected by the infiltration material, etching time, and acid concentration. For implant surfaces, it is expected that the use of etched bioactive glass-infiltrated zirconia with micro-topographies will be similar to that of machined or sand-blasted/acid-etched (SLA) titanium.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bioactive glass
24
bioactive glass-infiltrated
12
glass-infiltrated zirconia
12
acid etching
12
surface roughness
12
bioactive
9
surface characteristics
8
characteristics bioactive
8
hydrofluoric acid
8
etching conditions
8

Similar Publications

Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.

View Article and Find Full Text PDF

This study evaluated the osteogenic potential of the bioactive glasses SinGlass (45S5) and SinGlass High (F18) in regenerating critical bone defects in rat calvaria. Both biomaterials promoted new bone formation around the particles, with the SinGlass High (F18) group exhibiting a higher rate of bone maturation. Histomorphological and birefringence analyses revealed better organization of the newly formed bone in the biomaterial-treated groups, and immunohistochemistry indicated the expression of osteogenic markers such as osteocalcin, immunostaining for bone morphogenetic protein 2 (BMP 2), and immunostaining for bone morphogenetic protein 4 (BMP 4).

View Article and Find Full Text PDF

Macrophage metabolism is closely linked to their phenotype and function, which is why there is growing interest in studying the metabolic reprogramming of macrophages. Bioactive glass (BG) S53P4 is a bioactive material used especially in bone applications. Additionally, BG S53P4 has been shown to affect macrophages, but the mechanisms through which the possible immunomodulatory effects are conveyed remain unclear.

View Article and Find Full Text PDF

To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol-gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional melt-quenched BAG (BAG45) incorporated into dentin adhesive to assess their remineralization and mechanical properties. The BAGs were characterized by using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy for surface morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!