Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2α-subunit (eIF2α)/CCAAT/enhancer-binding protein homologous protein (CHOP) endoplasmic reticulum (ER) stress pathway in endothelial cells. Statins are cholesterol-lowering drugs that exert pleiotropic effects including suppression of oxidative stress. This study aimed to explore the roles of simvastatin on ox-LDL-induced ER stress and apoptosis in endothelial cells.
Methods: Human umbilical vein endothelial cells (HUVECs) were treated with simvastatin (0.1, 0.5, or 2.5 μmol/L) or DEVD-CHO (selective inhibitor of caspase-3, 100 μmol/L) for 1 h before the addition of ox-LDL (100 μg/ml) and then incubated for 24 h, and untreated cells were used as a control group. Apoptosis, expression of PERK, phosphorylation of eIF2α, CHOP mRNA level, and caspase-3 activity were measured. Comparisons among multiple groups were performed with one-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons using Tukey's tests. A value of P < 0.05 was considered statistically significant.
Results: Exposure of HUVECs to ox-LDL resulted in a significant increase in apoptosis (31.9% vs. 4.9%, P < 0.05). Simvastatin (0.1, 0.5, and 2.5 μmol/L) led to a suppression of ox-LDL-induced apoptosis (28.0%, 24.7%, and 13.8%, F = 15.039, all P < 0.05, compared with control group). Ox-LDL significantly increased the expression of PERK (499.5%, P < 0.05) and phosphorylation of eIF2α (451.6%, P < 0.05), if both of which in the control groups were considered as 100%. Simvastatin treatment (0.1, 0.5, and 2.5 μmol/L) blunted ox-LDL-induced expression of PERK (407.8%, 339.1%, and 187.5%, F = 10.121, all P < 0.05, compared with control group) and phosphorylation of eIF2α (407.8%, 339.1%, 187.5%, F = 11.430, all P < 0.05, compared with control group). In contrast, DEVD-CHO treatment had no significant effect on ox-LDL-induced expression of PERK (486.4%) and phosphorylation of eIF2α (418.8%). Exposure of HUVECs to ox-LDL also markedly induced caspase-3 activity together with increased CHOP mRNA level; these effects were inhibited by simvastatin treatment.
Conclusions: This study suggested that simvastatin could inhibit ox-LDL-induced ER stress and apoptosis in vascular endothelial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912062 | PMC |
http://dx.doi.org/10.4103/0366-6999.229891 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!