Phosphate homeostasis is tightly modulated in all organisms, including bacteria, which harbor both high- and low-affinity transporters acting under conditions of fluctuating phosphate levels. It was thought that nitrogen-fixing rhizobia, named bacteroids, inhabiting root nodules of legumes are not phosphate limited. Here, we show that the high-affinity phosphate transporter PstSCAB, rather than the low-affinity phosphate transporter Pit, is essential for effective nitrogen fixation of Sinorhizobium fredii in soybean nodules. Symbiotic and growth defects of the pst mutant can be effectively restored by knocking out PhoB, the transcriptional repressor of pit. The pst homologs of representative rhizobia were actively transcribed in bacteroids without terminal differentiation in nodules of diverse legumes (soybean, pigeonpea, cowpea, common bean, and Sophora flavescens) but exhibited a basal expression level in terminally differentiated bacteroids (alfalfa, pea, and peanut). Rhizobium leguminosarum bv. viciae Rlv3841 undergoes characteristic nonterminal and terminal differentiations in nodules of S. flavescens and pea, respectively. The pst mutant of Rlv3841 showed impaired adaptation to the nodule environment of S. flavescens but was indistinguishable from the wild-type strain in pea nodules. Taken together, root nodule rhizobia can be either phosphate limited or nonlimited regarding the rhizobial differentiation fate, which is a host-dependent feature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-02-18-0031-R | DOI Listing |
Front Plant Sci
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Carbonic anhydrases (CAs) are ubiquitous enzymes that catalyze reversibly both the hydration and dehydration reactions of CO and HCO-, respectively. Higher plants contain many different isoforms of CAs that can be classified into α-, β- and γ-type subfamilies. β-type CAs play a key role in the CO-concentrating mechanism, thereby contributing to efficient photosynthesis in the C plants in addition to many other biochemical reactions in plant metabolism.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Interdisciplinary Engineering and Sciences (SINES), Department of Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
The hemostatic system prevents and stops bleeding, maintaining circulatory integrity after injury. It directly interacts with the complement system, which is key to innate immunity. In coronavirus disease 2019 (COVID-19), dysregulation of the hemostatic and complement systems has been associated with several complications.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pathology, University of Utah, Salt Lake City, UT, United States.
Introduction: Chimeric antigen receptor (CAR) expressing T-cells have shown great promise for the future of cancer immunotherapy with the recent clinical successes achieved in treating different hematologic cancers. Despite these early successes, several challenges remain in the field that require to be solved for the therapy to be more efficacious. One such challenge is the lack of long-term persistence of CD28 based CAR T-cells in patients.
View Article and Find Full Text PDFGene
January 2025
Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China. Electronic address:
Fibrinogen-like (Fgl2) protein belongs to fibrinogen super family, which catalyzes the conversion of prothrombin to thrombin and is involved in the coagulation process. There are two different forms of functional Fgl2 protein: membrane associated Fgl2 (mFgl2) and soluble Fgl2 (sFgl2). mFgl2, as a type II transmembrane protein with property with prothrombinase activity from its N-terminal fragment, was extensively secreted or expressed by inflammatory macrophages, dendritic cells, Th1 cells and endothelial cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218.
The hippocampal dentate gyrus (DG) is thought to orthogonalize inputs from the entorhinal cortex (pattern separation) and relay this information to the CA3 region. In turn, attractor dynamics in CA3 perform a pattern completion or error correction operation before sending its output to CA1. In a mouse model of congenital hypoplasia of the DG, a deficiency in the (Wls) gene, specifically in cells expressing , which targets neuronal progenitors, led to an almost total absence of dentate granule cells and modestly impaired performance in spatial tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!