Second-harmonic generation microscopy represents an important tool to evaluate extracellular matrix collagen structure, which undergoes changes during cancer progression. Thus, it is potentially relevant to assess breast cancer development. We propose the use of second-harmonic generation images of tumor stroma selected on hematoxylin and eosin-stained slides to evaluate the prognostic value of collagen fibers analyses in peri and intratumoral areas in patients diagnosed with invasive ductal breast carcinoma. Quantitative analyses of collagen parameters were performed using ImageJ software. These parameters presented significantly higher values in peri than in intratumoral areas. Higher intratumoral collagen uniformity was associated with high pathological stages and with the presence of axillary lymph node metastasis. In patients with immunohistochemistry-based luminal subtype, higher intratumoral collagen uniformity and quantity were independently associated with poorer relapse-free and overall survival, respectively. A multivariate response recursive partitioning model determined 12.857 and 11.894 as the best cut-offs for intratumoral collagen quantity and uniformity, respectively. These values have shown high sensitivity and specificity to differentiate distinct outcomes. Values of intratumoral collagen quantity and uniformity exceeding the cut-offs were strongly associated with poorer relapse-free and overall survival. Our findings support a promising prognostic value of quantitative evaluation of intratumoral collagen by second-harmonic generation imaging mainly in the luminal subtype breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1010428318770953DOI Listing

Publication Analysis

Top Keywords

intratumoral collagen
20
second-harmonic generation
16
breast cancer
12
collagen
9
generation microscopy
8
peri intratumoral
8
intratumoral areas
8
higher intratumoral
8
collagen uniformity
8
luminal subtype
8

Similar Publications

A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types.

View Article and Find Full Text PDF

Autophagy inhibition alleviates tumor desmoplasia and improves the efficacy of locally and systemically administered liposomal doxorubicin.

J Control Release

January 2025

Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

The abnormal physiology of the tumor microenvironment poses a challenge to the drug delivery in the tumor tissues. The dense tumor stroma hinders the movement of nanomedicine through the interstitium and negatively impacts their efficacy. In this study, hydroxychloroquine (HCQ) was investigated for its impact on alleviating the hindrance offered to the nanomedicine by extracellular matrix (ECM) components such as collagen and hyaluronan.

View Article and Find Full Text PDF

The importance of collagen and elastin remains incompletely understood concerning tumor immunity in cancer tissues. This study explored the clinical significance of collagen and elastin deposition on tumor immunity in advanced colorectal cancer patients. The collagen and elastin contents were assessed simultaneously using elastic van Gieson (EVG) histochemical staining.

View Article and Find Full Text PDF

Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma.

Nat Biomed Eng

December 2024

Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.

In patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo.

View Article and Find Full Text PDF

Desmoplasia is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC) that contributes significantly to treatment resistance. Approaches to enhance drug delivery into fibrotic PDAC tumors continue to be an important unmet need. In this study, we have engineered a tumor-colonizing -based agent that expresses both collagenase and hyaluronidase as a strategy to reduce desmoplasia and enhance the intratumoral perfusion of anticancer agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!