Metabolic coupling of axons and glial cells: Implications for multiple sclerosis progression.

Neurology

From the Department of Neurology (J.C., M.C.Y.), Raúl Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina; and Department of Neurology (E.E.B.), Mayo Clinic, Rochester, MN.

Published: April 2018

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000005339DOI Listing

Publication Analysis

Top Keywords

metabolic coupling
4
coupling axons
4
axons glial
4
glial cells
4
cells implications
4
implications multiple
4
multiple sclerosis
4
sclerosis progression
4
metabolic
1
axons
1

Similar Publications

Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.

View Article and Find Full Text PDF

Reductive acetogenesis is a dominant process in the ruminant hindgut.

Microbiome

January 2025

Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.

Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.

View Article and Find Full Text PDF

TaWI12 is a member of the wound-induced (WI) protein family, which has been implicated in plant stress responses and developmental processes. Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies.

View Article and Find Full Text PDF

The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.

View Article and Find Full Text PDF

Argonaute2 modulates megakaryocyte development and sex-specific control of platelet protein expression and reactivity.

Sci Rep

January 2025

Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.

Platelets are enriched in miRNAs and harbor Ago2 as the principal RNA silencing Argonaute. However, roles in thrombopoiesis and platelet function remain poorly understood. We generated megakaryocyte/platelet-specific Ago2-deleted (Ago2 KO) mice and assessed proteomic and functional effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!