Development of a cost effective and robust AlphaScreen platform for application.

Biotechniques

Targeted Therapeutic Drug Discovery & Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.

Published: April 2018

The use of AlphaScreen detection has allowed researchers to examine a wide variety of molecular interactions for use in high-throughput screening. However, the cost of Alpha reagents can often be prohibitory for extended screening campaigns or for young investigators with limited funding. To reduce assay costs, many labs have focused on miniaturization, while there have been limited efforts to scale down Alpha reagents. Thus, we describe the optimization of an AlphaScreen detection platform by systematically reducing the Alpha reagents down to 2.5 μg/ml beads, without compromising assay integrity. We demonstrate that reducing bead concentration reduces detection costs substantially while yielding robust statistics. We believe this simple new protocol will enhance the future utilization of AlphaScreen technology in high-throughput screening.

Download full-text PDF

Source
http://dx.doi.org/10.2144/btn-2018-2001DOI Listing

Publication Analysis

Top Keywords

alpha reagents
12
alphascreen detection
8
high-throughput screening
8
development cost
4
cost effective
4
effective robust
4
alphascreen
4
robust alphascreen
4
alphascreen platform
4
platform application
4

Similar Publications

Domino Knoevenagel-cyclization reactions of styrene substrates, containing an -(-formyl)aryl subunit, were carried out with -substituted 2-cyanoacetamides to prepare tetrahydro-4-pyrano[3,4-]quinolone and hexahydrobenzo[]phenanthridine derivatives by competing IMHDA and IMSDA cyclization, respectively. The diastereoselective IMHDA step with α,β-unsaturated amide, thioamide, ester and ketone subunits as a heterodiene produced condensed chiral tetrahydropyran or thiopyran derivatives, which in the case of Meldrum's acid were reacted further with amine nucleophiles in a multistep domino sequence. In order to simplify the benzene-condensed tricyclic core of the targets and get access to hexahydro-1-pyrano[3,4-]pyridine derivatives, a truncated substrate was reacted with cyclic and acyclic active methylene reagents in diastereoselective Knoevenagel-IMHDA reactions to prepare novel condensed heterocyclic scaffolds.

View Article and Find Full Text PDF

Pancreatic cell damage in diabetes mellitus is closely linked to inflammation and apoptosis. This study aimed to investigate the protective effects of phloroglucinol on pancreatic cells in a streptozotocin-induced diabetic model by assessing its anti- inflammatory and anti-apoptotic mechanisms. Phloroglucinol ligand and the structures of Bax, Bcl-2, and caspase-3 proteins were sourced from the PubChem database.

View Article and Find Full Text PDF

Gelatin is a versatile substance extensively used in medical and pharmaceutical industries for many applications, including capsule shells, X-ray film, infusion for plasma substitute, and the fabricating of artificial tissue. Fish scale gelatin is a profitable alternative source as a halal material despite its inferior quality. An addition of phenolic cross-linker may enhance the qualities of fish scale gelatin.

View Article and Find Full Text PDF

Despite the evident demand and promising potential of disulfide-functionalized amino acids and peptides in linker chemistry and peptide drug discovery, those disulfurated specifically at the α-position constitute a unique yet rather highly underexplored chemical space. In this study, we have developed a method for preparing -linked amino acid/peptide derivatives through a base-catalyzed disulfuration reaction of azlactones, followed by the ring-opening functionalization. The disulfuration reaction proceeds under mild conditions, yielding disulfurated azlactones in excellent yields across a variety of -dithiophthalimides and diverse azlactones derived from various amino acids and peptides.

View Article and Find Full Text PDF

Metal- and Azide-Free Iodine-Promoted Aerobic Oxidative Cyclization to Trifluoromethylated Triazoles.

J Org Chem

January 2025

College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, China.

A novel metal- and azide-free methodology for the synthesis of trifluoromethylated 1,2,3-triazoles from arylamines with a new 3-bromo-1,1,1-trifluoropropan-2-one derived tosylhydrazone has been developed under mild reaction conditions. The new α-bromo-trifluoromethylated tosylhydrazone reagent was operationally safe and bench-stable from low-cost and readily commercially available starting materials in the iodine-promoted aerobic oxidative cycloaddition reaction with arylamines, affording a variety of trifluoromethylated 1,2,3-triazoles in good to excellent yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!