Objectives: This study aimed to investigate the effects of whole-body vibration (WBV) training on ankle spasticity, balance, and walking ability in patients with incomplete spinal cord injury (iSCI) at cervical level.
Methods: Twenty-eight patients with cervical iSCI were randomly assigned to WBV (n = 14) or control group (n = 14). WBV group received WBV training, while control group was treated with placebo-treatment. All interventions were given for 20-min, twice a day, 5-days a week for 8-weeks. The spasticity of ankle plantar-flexors was assessed by estimating passive resistive force using a hand-held dynamometer. Balance was analyzed based on postural sway length (PSL) using a force plate. Timed-Up and Go test (TUG) and 10 m-Walk Test (10MWT) were used to assess walking ability.
Results: Both groups showed significant improvements in spasticity, balance and walking ability. Also, the significant differences between two groups were demonstrated in the outcomes of spasticity (3.0±1.7 vs 0.9±1.2), PSL (6.4±1.2 vs 3.2±0.9 with eyes-open, and 15.1±10.9 vs 7.4±4.3 with eyes-closed), TUG (2.3±1.3 vs 1.0±1.0), and 10MWT (3.5±2.3 vs 1.3±1.4).
Conclusions: WBV may be a safe and effective intervention to improve spasticity, balance and walking ability in individuals with cervical iSCI. Thus, WBV may be used to improve these symptoms in clinics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/NRE-172333 | DOI Listing |
Int J Mol Sci
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Spinal cord injury (SCI) can lead to devastating dysfunctions and complications, significantly impacting patients' quality of life and aggravating the burden of disease. Since the main pathological mechanism of SCI is the disruption of neuronal circuits, the primary therapeutic strategy for SCI involves reconstructing and activating circuits to restore neural signal transmission. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation technique, can modulate the function or state of the nervous system by pulsed magnetic fields.
View Article and Find Full Text PDFSci Rep
January 2025
Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Kitakatsuragi-gun, Koryo, Nara, 635-0832, Japan.
In post-stroke persons, temporal gait asymmetry (TGA) during comfortable gait involves a combination of pure impairments and compensatory strategies. In this study, we aimed to differentiate between pure impairments and compensatory strategies underlying TGA in post-stroke individuals and identify associated clinical factors. We examined 39 post-stroke individuals who participated in comfortable walking speed (CWS) and rhythmic auditory cueing (RAC).
View Article and Find Full Text PDFToxicon
January 2025
University of Staffordshire, Stoke on Trent, ST4 2DE, United Kingdom.
Botulinum toxin type A is a first line choice in the treatment of spastic muscle overactivity. However, targeting the muscles involved in the deformity with the appropriate dose as well as choosing the goal to achieve and predicting the expected results can be challenging. Diagnostic nerve block with anaesthetics rapidly and temporarily suppresses overactivity of the selected muscle allowing clinicians to identify the involved muscles and the potential improvement of botulinum toxin injections.
View Article and Find Full Text PDFJ Burn Care Res
January 2025
Indiana University, Division of Plastic Surgery, Indianapolis, IN, USA.
Burn injuries in patients with significant pre-existing medical conditions provide unique challenges in both medical management and surgical planning. Spasticity, if left untreated, can be one of the most disabling consequences of a neurologic injury. Treatment is largely dependent on pharmacologic management with anti-spasmodic agents such as baclofen.
View Article and Find Full Text PDFJ Clin Med
December 2024
Pető András Faculty, Semmelweis University, 1125 Budapest, Hungary.
Cerebral palsy (CP) manifests with abnormal posture and impaired selective motor control, notably affecting trunk control and dynamic balance coordination, leading to inadequate postural control. Previous research has indicated the benefits of pulsed electromagnetic field (PEMF) therapy for various musculoskeletal and neurological conditions. Therefore, we conducted a randomized pilot study to assess the feasibility of our preliminary research design and examine the effect of the PEMF treatment among children with CP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!