What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an extended Kaya identity.

Sci Total Environ

School of Construction Management and Real Estate, Chongqing University, Chongqing 400045, PR China; Special Committee of Building Energy Consumption Statistics, China Association of Building Energy Efficiency, Beijing 100835, PR China; Energy Analysis and Environmental Impacts Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Electronic address:

Published: September 2018

AI Article Synopsis

  • Energy efficiency in China's building sector is critical, projected to contribute over 50% to national efforts in carbon emission reduction by 2030, with a focus on Chinese commercial buildings (CMCCB).
  • The study utilized the China Database of Building Energy Consumption and Carbon Emissions and the Logarithmic Mean Divisia Index (LMDI) to analyze the carbon emissions from commercial buildings between 2001 and 2015, revealing that only two driving forces negatively influenced these emissions.
  • The model developed in this research not only confirmed the reliability of CMCCB assessments but also highlighted significant progress in energy efficiency within the sector, offering a framework applicable for broader evaluations, including at provincial levels and globally.

Article Abstract

Energy efficiency in the building sector is expected to contribute >50% to the nationwide carbon mitigation efforts for achieving China's carbon emission peak in 2030, and carbon mitigation in Chinese commercial buildings (CMCCB) is an indicator of this effort. However, the CMCCB assessment has faced the challenge of ineffective and inadequate approaches; therefore, we have followed a different approach. Using the China Database of Building Energy Consumption and Carbon Emissions as our data source, our study is the first to employ the Logarithmic Mean Divisia Index (LMDI) to decompose five driving forces from the Kaya identity of Chinese commercial building carbon emissions (CCBCE) to assess the CMCCB values in 2001-2015. The results of our study indicated that: (1) Only two driving forces (i.e., the reciprocal of GDP per capita of Tertiary Industry in China and the CCBCE intensity) contributed negatively re to CCBCE during 2001-2015, and the quantified negative contributions denoted the CMCCB values. Specifically, the CMCCB values in 2001-2005, 2006-2010, and 2011-2015 were 123.96, 252.83, and 249.07 MtCO, respectively. (2) The data quality control involving the CMCCB values proved the reliability of our CMCCB assessment model, and the universal applicability of this model was also confirmed. (3) The substantial achievements of the energy efficiency project in the Chinese commercial building sector were the root cause of the rapidly growing CMCCB. Overall, we believe that our model successfully bridges the research gap of the nationwide CMCCB assessment and that the proposed model is also suitable either at the provincial level or in different building climate zones in China. Meanwhile, a global-level assessment of the carbon mitigation in the commercial building sector is feasible through applying our model. Furthermore, we consider our contribution as constituting significant guidance for developing the building energy efficiency strategy in China in the upcoming phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.04.043DOI Listing

Publication Analysis

Top Keywords

carbon mitigation
16
chinese commercial
16
commercial building
16
cmccb values
16
energy efficiency
12
building sector
12
cmccb assessment
12
cmccb
9
mitigation chinese
8
building
8

Similar Publications

Climate change policies are driving the oil and gas industry to explore CO injection for carbon dioxide storage in reservoirs. In the United States, a substantial portion of oil production relies on CO-enhanced-oil-recovery (CO-EOR), demonstrating a growing interest in using CO to address various production challenges like condensate mitigation, pressure maintenance, and enhancing productivity in tight reservoirs. CO injection introduces gases like natural gas and N, either pre-existing or as impurities in the injected CO gas.

View Article and Find Full Text PDF

Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.

View Article and Find Full Text PDF

Assessing sub-Saharan Africa's GHG emissions from croplands: environmental impacts and sustainable mitigation strategies.

Environ Monit Assess

January 2025

Department of Environmental Management, Institute of Environmental Engineering, RUDN University, Miklukho-Maklaya Street, 117198, Moscow, Russia.

Globally, agricultural lands are among the top emitters of greenhouse gases (GHGs), responsible for over 20% of total greenhouse gas (GHG) emissions. Climatic conditions, an acute challenge in sub-Saharan Africa (SSA), where access to mitigation technologies remains limited, have heavily influenced these lands. This study explores GHG contributions from crop production and their devastating and deteriorating impacts on the economy and environment and proposes a sustainable solution.

View Article and Find Full Text PDF

Society for Cardiovascular Magnetic Resonance recommendations toward environmentally sustainable cardiovascular magnetic resonance.

J Cardiovasc Magn Reson

January 2025

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA. Electronic address:

Delivery of health care, including medical imaging, generates substantial global greenhouse gas emissions. The cardiovascular magnetic resonance (CMR) community has an opportunity to decrease our carbon footprint, mitigate the effects of the climate crisis, and develop resiliency to current and future impacts of climate change. The goal of this document is to review and recommend actions and strategies to allow for CMR operation with improved sustainability, including efficient CMR protocols and CMR imaging workflow strategies for reducing greenhouse gas emissions, energy, and waste, and to decrease reliance on finite resources, including helium and waterbody contamination by gadolinium-based contrast agents.

View Article and Find Full Text PDF

Arginine-derived carbon dots with antioxidant activity for treating aflatoxin B1-induced liver injury via Nrf2/Keap1 and NLRP3 pathways in mice.

Life Sci

January 2025

School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China. Electronic address:

Aflatoxin B1 (AFB1) is a prevalent contaminant in food and feed matrices, known for its hepatotoxic effects. Its metabolic breakdown generates reactive oxygen species (ROS), leading to oxidative stress and subsequent liver damage. Mitigating oxidative stress is, therefore, essential for ameliorating the hepatocellular damage and systemic toxicity caused by AFB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!