Potentiometric and NMR spectroscopic studies of the nucleotide (NucP)/polyamine (PA) system (where NucP = CDP, CTP, PA = putrescine or spermidine) revealed the formation of molecular complexes (NucP)(H)(PA) (where H = number of protons; x - from NucP and y - from PA). Their thermodynamic parameters were determined and the modes of their interactions were proposed. The main reaction centers were found to be the protonated amine groups of polyamine (positive centers) and phosphate groups of nucleotide (negative centers). The pH ranges in which the complex occurs correspond to those of amine protonation and -PO group deprotonation, which unambiguously confirms the dipole-dipole type of interaction. In the pH range of total deprotonation of NH groups from the polyamine, the molecular complexes disappear. The equilibrium and spectroscopic studies of the ternary systems Cu(II)/NucP/PA evidenced the formation of Cu(NucP)H(PA) type coordination compounds and Cu(NucP)⋯(PA)(H) type molecular complexes with polyamine in the outer coordination sphere. The main sites of metal ion bonding in the latter species are the phosphate groups of the nucleotide, while in the coordination compounds - besides the phosphate groups - also the donor nitrogen atoms from the polyamines. In this paper we have also quantitatively calculated the effect of metal ions on the formation of the molecular complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2018.04.003DOI Listing

Publication Analysis

Top Keywords

molecular complexes
16
phosphate groups
12
spectroscopic studies
8
formation molecular
8
groups polyamine
8
groups nucleotide
8
coordination compounds
8
groups
5
influence copperii
4
copperii ions
4

Similar Publications

Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations.

View Article and Find Full Text PDF

The role of B cells in the pathogenesis of type 1 diabetes.

Front Immunol

December 2024

Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.

Type 1 diabetes (T1D) is a metabolic disorder caused by a complete lack of insulin, primarily manifested by hyperglycemia. The mechanisms underlying the onset of T1D are complex, involving genetics, environment, and various unknown factors, leading to the infiltration of various immune components into the islets. Besides T cells, B cells are now considered important contributors to the pathogenesis of T1D, according to recent studies.

View Article and Find Full Text PDF

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors with an annual incidence of ~2 cases per million worldwide. The hereditary form is more likely to present in younger patients. To date, PPGL is considered a complex pathology that is difficult to diagnose.

View Article and Find Full Text PDF

The title compound, [Cu(CHO)(CHN)], crystallizes in the ortho-rhom-bic space group . In the crystal structure, the Cu ion is coordinated by two acetyl-acetonate ligands and one 2-amino-1-methyl-1-benzimidazole ligand. The crystal structure features intra-molecular N-H⋯O and inter-molecular N-H⋯O hydrogen bonds, which contribute to the overall cohesion of the crystal.

View Article and Find Full Text PDF

In the binuclear title complex, [La(CHO)(CHN)(HO)](NO)·0.5HO, the two lanthanum ions are nine coordinate in a distorted trigonal-prismatic geometry. Each La ion is bonded to three N atoms of the Schiff base, 1-(pyridin-2-yl)-2-(pyridin-2-yl-methyl-ene)hydrazine and is coordinated by one acetate group, which acts in -bidentate mode and two acetate groups that act in -mode between the two La ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!