Fructose is now such an important component of human diets, and several studies have found that some cancer cells could utilize fructose to overcome low glucose micro-environment, but the study on the role of fructose in glioma is rare. To explore the role of fructose in glioma, we detected the proliferation and colony formation ability of glioma cells in fructose medium, and found that the abilities of proliferation and colony formation of glioma cells in fructose medium were similar with abilities in glucose medium, however, fructose just partly restored proliferation ability of normal glial cells. To explore the mechanism, we compared the expression level of GLUT5 (Glucose transporter type 5) in these cell lines, and the results showed that glioma cell lines had higher GLUT5 expression than normal glial cell lines. And knockdown of GLUT5 could significantly inhabit cell proliferation of glioma cells in fructose medium. Furthermore, we found that GLUT5 was also higher expressed in glioma tissues, and GLUT5 expression correlated significantly with glioma malignancy and poor survival of glioma patients (p < 0.01). In addition, we also demonstrated that knockdown of GLUT5 could significantly inhabit tumor proliferation in vivo, and intake fructose could increase tumor volume prominently. Taken together, our data show that fructose can be used by glioma cells, and restrict the fructose intake or targeting GLUT5 could be efficacious strategies in glioma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2018.04.103 | DOI Listing |
Acta Neuropathol Commun
January 2025
Institute of Cancer Research, London, UK.
Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.
View Article and Find Full Text PDFImmunity
January 2025
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, A-1090 Vienna, Austria. Electronic address:
Inhibiting T cell exhaustion is an attractive cancer immunotherapy strategy. In this issue of Immunity, Waibl Polania et al. examine the microenvironmental signals regulating terminal T cell exhaustion and find that antigen presentation by tumor-associated macrophages, not tumor cells, drives terminal T cell exhaustion in glioblastoma.
View Article and Find Full Text PDFSci Adv
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey.
The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h).
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Pharmacy The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!