A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HOMO Level Pinning in Molecular Junctions: Joint Theoretical and Experimental Evidence. | LitMetric

A central issue in molecular electronics in order to build functional devices is to assess whether changes in the electronic structure of isolated compounds by chemical derivatization are retained once the molecules are inserted into molecular junctions. Recent theoretical studies have suggested that this is not always the case due to the occurrence of pinning effects making the alignment of the transporting levels insensitive to the changes in the electronic structure of the isolated systems. We explore here this phenomenon by investigating at both the experimental and theoretical levels the I/ V characteristics of molecular junctions incorporating three different three-ring phenylene ethynylene derivatives designed to exhibit a significant variation of the HOMO level in the isolated state. At the theoretical level, our NEGF/DFT calculations performed on junctions including the three compounds show that, whereas the HOMO of the molecules varies by 0.61 eV in the isolated state, their alignment with respect to the Fermi level of the gold electrodes in the junction is very similar (within 0.1 eV). At the experimental level, the SAMs made of the three compounds have been contacted by a conducting AFM probe to measure their I/ V characteristics. The alignment of the HOMO with respect to the Fermi level of the gold electrodes has been deduced by fitting the I/ V curves, using a model based on a single-level description (Newns-Anderson model). The extracted values are found to be very similar for the three derivatives, in full consistency with the theoretical predictions, thus providing clear evidence for a HOMO level pinning effect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.8b00575DOI Listing

Publication Analysis

Top Keywords

homo level
12
molecular junctions
12
level pinning
8
changes electronic
8
electronic structure
8
structure isolated
8
isolated state
8
three compounds
8
respect fermi
8
fermi level
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!