Background: The accumulation of iron occurs in the central nervous system (CNS) in several neurodegenerative diseases. Although multi-copper ferroxidases (MCFs) play an important role in cellular iron metabolism and homeostasis, the mechanism of MCFs in the CNS remains unclear.
Objective: The aim was to study the role of MCFs in CNS iron metabolism and homeostasis by using hephaestin/ceruloplasmin (Heph/Cp) double knockout (KO) mice.
Methods: Heph/Cp double KO male mice were generated by crossing both single KO mice. In Heph/Cp KO and wild-type (WT) control mice at 4 wk and 6 mo of age, iron concentrations of selected brain regions were measured by atomic absorption spectrophotometry, and gene expressions of Heph, Cp, ferroportin 1 (Fpn1) [+ iron responsive element (IRE)], L-ferritin, H-ferritin, transferrin receptor 1 (Tfrc), and divalent metal transporter 1 (Dmt1) (+IRE) were quantitated by quantitative reverse transcriptase-polymerase chain reaction. Brain region L-ferritin protein concentration, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities and malondialdehyde (MDA) concentration were also determined. Learning and memory abilities in Heph/Cp KO and WT control mice at 6 mo of age were tested by the IntelliCage system (New Behavior).
Results: Iron concentration was significantly higher in Heph/Cp KO mice than in WT control mice at 4 wk of age in the cortex (50%), hippocampus (120%), brainstem (35%), and cerebellum (220%) and at 6 mo of age in the cortex (140%), hippocampus (420%), brainstem (560%), and cerebellum (340%). L-Ferritin and MDA concentrations were significantly higher and SOD and GPx activities were significantly lower in the cortex, hippocampus, brainstem, and cerebellum of KO mice than in those of WT controls at both 4 wk and 6 mo of age. Iron-related gene expressions also differed significantly between groups. Learning and memory deficits occurred in Heph/Cp KO mice at 6 mo of age.
Conclusion: Mutation of both MCFs in mice induces iron accumulation in brain regions, oxidative damage, and learning and memory defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/nxy012 | DOI Listing |
Nat Commun
January 2025
Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.
Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA. Electronic address:
Background: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.
Methods: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.
J Prev Alzheimers Dis
February 2025
Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.
Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.
Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).
Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.
Brain Res
January 2025
Department of Computing Science, University of Alberta Edmonton Alberta Canada; Alberta Machine Intelligence Institute Edmonton Alberta Canada; Canada Institute for Advanced Research (CIFAR) AI Chair, Canada.
Humans are excellent at modifying our behaviour depending on context. For example, humans will change how they explore when losses are possible compared to when they are not possible. However, it remains unclear what specific cognitive and neural processes are modulated when exploring in different contexts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!