EMC10 governs male fertility via maintaining sperm ion balance.

J Mol Cell Biol

State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.

Published: December 2018

AI Article Synopsis

  • * This study highlights EMC10, a protein critical for male fertility, showing that its absence in mice leads to sterility and various sperm defects, including poor motility and abnormal morphology.
  • * Mechanistically, EMC10 helps regulate ion balance in sperm, and its deficiency results in impaired sperm function, indicating that it could serve as a potential biomarker and treatment target for male infertility.

Article Abstract

Infertility is a severe public health problem worldwide that prevails up to 15% in reproductive-age couples, and male infertility accounts for half of total infertility. Studies on genetically modified animal models have identified lots of genes involved in the pathogenesis of male infertility. The underlying causes, however, remain largely unclear. In this study, we provide evidence that EMC10, one subunit of endoplasmic reticulum (ER) membrane protein complex (EMC), is required for male fertility. EMC10 is significantly decreased in spermatozoa from patients with asthenozoospermia and positively associated with human sperm motility. Male mice lacking Emc10 gene are completely sterile. Emc10-null spermatozoa exhibit multiple defects including abnormal morphology, decreased motility, impaired capacitation, and impotency of acrosome reaction, thereby which are incapable of fertilizing intact or ZP-free oocytes. However, intracytoplasmic sperm injection could rescue this defect caused by EMC10 deletion. Mechanistically, EMC10 deficiency leads to inactivation of Na/K-ATPase, in turn giving rise to an increased level of intracellular Na+ in spermatozoa, which contributes to decreased sperm motility and abnormal morphology. Other mechanistic investigations demonstrate that the absence of EMC10 results in a reduction of HCO3- entry and subsequent decreases of both cAMP-dependent protein kinase A substrate phosphorylation and protein tyrosine phosphorylation. These data demonstrate that EMC10 is indispensable to male fertility via maintaining sperm ion balance of Na+ and HCO3-, and also suggest that EMC10 is a promising biomarker for male fertility and a potential pharmaceutical target to treat male infertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962889PMC
http://dx.doi.org/10.1093/jmcb/mjy024DOI Listing

Publication Analysis

Top Keywords

male fertility
16
male infertility
12
emc10
9
male
8
fertility maintaining
8
maintaining sperm
8
sperm ion
8
ion balance
8
sperm motility
8
abnormal morphology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!