The quality of service (QoS) regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs). Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold ( N t ) or the waiting time is equal to the aggregation timer ( T t ), data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR) scheme are the following: (a) the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b) An improved AAR scheme is proposed to improve the QoS. The aggregation deadline ( T t ) and the aggregation threshold ( N t ) are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of T t and N t to reduce delay, and the nodes near the sink are set to a large value of T t and N t to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases energy efficiency by 76.40%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948754 | PMC |
http://dx.doi.org/10.3390/s18041216 | DOI Listing |
Basic Res Cardiol
December 2024
Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
Numerous cardioprotective interventions have been reported to reduce myocardial infarct size (IS) in pre-clinical studies. However, their translation for the benefit of patients with acute myocardial infarction (AMI) has been largely disappointing. One reason for the lack of translation is the lack of rigor and reproducibility in pre-clinical studies.
View Article and Find Full Text PDFERJ Open Res
September 2024
The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
Background: In patients with coronavirus disease 2019 (COVID-19) requiring supplemental oxygen, dexamethasone reduces acute severity and improves survival, but longer-term effects are unknown. We hypothesised that systemic corticosteroid administration during acute COVID-19 would be associated with improved health-related quality of life (HRQoL) 1 year after discharge.
Methods: Adults admitted to hospital between February 2020 and March 2021 for COVID-19 and meeting current guideline recommendations for dexamethasone treatment were included using two prospective UK cohort studies (Post-hospitalisation COVID-19 and the International Severe Acute Respiratory and emerging Infection Consortium).
Disaster Med Public Health Prep
November 2023
Centers for Disease Control and Prevention, Division of Emergency Operations, Atlanta, GA, USA.
After-Action Reports (AARs) are retrospective summaries that capture key information and lessons learned from emergency response exercises and real incidents. The AAR is a commonly used evaluation tool used by the Centers for Disease Control and Prevention as part of the Public Health Emergency Preparedness (PHEP) program. It is used as a metric of accountability and awardee performance.
View Article and Find Full Text PDFBr J Clin Pharmacol
November 2022
Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, Australia.
Environ Int
February 2020
Environmental Science Research Institute, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Arsenic-alkali residue (AAR) from antimony smelting is highly hazardous due to its ready leachability of As, seeking for proper disposal such as stabilization treatment. However, As stabilization in AAR would be challenging due to the high content of coexisting soluble carbonate. This study conducted the stabilization treatments of AAR by ferrous sulfate and lime, respectively, and revealed the significant influence of coexisting carbonate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!