Lesinski, M, Prieske, O, Borde, R, Beurskens, R, and Granacher, U. Effects of different footwear properties and surface instability on neuromuscular activity and kinematics during jumping. J Strength Cond Res 32(11): 3246-3257, 2018-The purpose of this study was to examine sex-specific effects of different footwear properties vs. barefoot condition during the performance of drop jumps (DJs) on stable and unstable surfaces on measures of jump performance, electromyographic (EMG) activity, and knee joint kinematics. Drop jump performance, EMG activity of lower-extremity muscles, as well as sagittal and frontal knee joint kinematics were tested in 28 healthy male (n = 14) and female (n = 14) physically active sports science students (23 ± 2 years) during the performance of DJs on stable and unstable surfaces using different footwear properties (elastic vs. minimal shoes) vs. barefoot condition. Analysis revealed a significantly lower jump height and performance index (Δ7-12%; p < 0.001; 2.22 ≤ d = 2.90) during DJs on unstable compared with stable surfaces. This was accompanied by lower thigh/shank muscle activities (Δ11-28%; p < 0.05; 0.99 ≤ d = 2.16) and knee flexion angles (Δ5-8%; p < 0.05; 1.02 ≤ d = 2.09). Furthermore, knee valgus angles during DJs were significantly lower when wearing shoes compared with barefoot condition (Δ22-32%; p < 0.01; 1.38 ≤ d = 3.31). Sex-specific analyses indicated higher knee flexion angles in females compared with males during DJs, irrespective of the examined surface and footwear conditions (Δ29%; p < 0.05; d = 0.92). Finally, hardly any significant footwear-surface interactions were detected. Our findings revealed that surface instability had an impact on DJ performance, thigh/shank muscle activity, and knee joint kinematics. In addition, the single factors "footwear" and "sex" modulated knee joint kinematics during DJs. However, hardly any significant interaction effects were found. Thus, additional footwear-related effects can be neglected when performing DJs during training on different surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1519/JSC.0000000000002556 | DOI Listing |
Int J Biol Macromol
December 2024
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Archeology Innovation Center, Zhengzhou University, Zhengzhou 450001, PR China. Electronic address:
In this study, CA-Gel complexes were prepared by crosslinking gelatin with chlorogenic acid (CA) by EDC/NHS chemistry, and incorporated into gelatin to produce CA-Gel/Gel films for leather artifact preservation. The synthesized CA-Gel complex had a total phenolic content of 139.62 ± 1.
View Article and Find Full Text PDFJ Adv Res
December 2024
Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China. Electronic address:
Introduction: Materials exhibiting a Poisson's ratio of zero have attracted considerable interest due to their unique properties and potential applications in various fields, including aerospace, athletic footwear, and sporting equipment. However, the high costs associated with their structural fabrication and the dependence on synthetic chemical materials for most zero Poisson's ratio materials complicate the preparation processes of current elastic materials, resulting in negative environmental impacts.
Objectives: This study presents a sustainable treatment strategy that utilizes the inherent cellular structure of wood to achieve a zero Poisson's ratio, thereby enhancing its elasticity.
Cureus
November 2024
Department of Orthopedics and Traumatology, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU.
This study aims to evaluate the osteoconductive and osteoinductive potential of novel composite collagenous sponges enriched with keratin (K), hydroxyapatite (HA), and their combination (K+HA) for osteochondral regeneration in rat knee models. By examining cell proliferation, mineralization, and vascularization, we aim to determine the regenerative effectiveness of these materials in promoting osteochondral repair, particularly in load-bearing joints like the knee. Addressing the problem of osteochondral defects (OCD), which lead to osteoarthritis-a condition characterized by pain and functional impairment-the hereby research evaluates these biomaterials for their potential to foster bone and cartilage repair, especially in load-bearing joints as the knee.
View Article and Find Full Text PDFJ Appl Biomech
December 2024
School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
Advanced footwear technologies contain thicker, lightweight, and more resilient midsoles and are associated with improved running economy (RE) compared with traditional footwear. This effect is highly variable with some individuals gaining a greater RE benefit, indicating that biomechanics plays a mediating role with respect to the total effect. Indeed, the energy generated by contractile elements and the elastic energy recovered from stretched tendons and ligaments in the legs and feet are likely to change with footwear.
View Article and Find Full Text PDFScand J Med Sci Sports
December 2024
Université Jean Monnet Saint-Etienne, Inter-University Laboratory of Human Movement Biology, Saint-Etienne, France.
Soft tissue vibrations (STV) can generate discomfort during running. Recent research has shown that footwear affects the amplitude of STV differently across runners but no studies have linked human characteristics and footwear construction yet. The purpose of this study was to investigate the runner specific STV responses to various midsole hardness and to identify functional groups, that is, groups of runners responding similarly to a given intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!