In this study, unique thermal transport features of nanowires over bulk materials are investigated using a combined analysis based on lattice dynamics and equilibrium molecular dynamics (EMD). The evaluation of the thermal conductivity (TC) of Lenard-Jones nanowires becomes feasible due to the multi-step normal mode decomposition (NMD) procedure implemented in the study. A convergence issue of the TC of nanowires is addressed by the NMD implementation for two case studies, which employ pristine nanowires (PNW) and superlattice nanowires. Interestingly, mode relaxation times at low frequencies of acoustic branches exhibit signs of approaching constant values, thus indicating the convergence of TC. The TC evaluation procedure is further verified by implementing EMD-based Green-Kubo analysis, which is based on a fundamentally different physical perspective. Having verified the NMD procedure, the non-monotonic trend of the TC of nanowires is addressed. It is shown that the principal cause for the observed trend is due to the competing effects of long wavelength phonons and phonon-surface scatterings as the nanowire's cross-sectional width is changed. A computational procedure is developed to decompose the different modal contribution to the TC of shell alloy nanowires (SANWs) using virtual crystal NMD and the Allen-Feldman theory. Several important conclusions can be drawn from the results. A propagons to non-propagons boundary appeared, resulting in a cut-off frequency (ω ); moreover, as alloy atomic mass is increased, ω shifts to lower frequencies. The existence of non-propagons partly causes the low TC of SANWs. It can be seen that modes with low frequencies demonstrate a similar behavior to corresponding modes of PNWs. Moreover, lower group velocities associated with higher alloy atomic mass resulted in a lower TC of SANWs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aabe54 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), IIT M Research Park, Chennai 600113, India.
The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Organic-inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura C3, Nishikyo-ku, Kyoto 615-8540, Japan.
The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
Achieving low thermal conductivity and high mechanical strength presents a material design challenge due to intrinsic trade-offs, such as the aerogel's porosity, impeding applications in construction, industry, and aerospace. This study presents a composite that incorporates a silica aerogel within a thermally expanded 2D layered vermiculite matrix. This design overcomes limitations imposed by van der Waals bonding lengths, typically less than 10 Å, which hinder aerogel integration with van der Waals crystals.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27607, United States.
Albeit there is widespread application of thermally conductive polymer composites, one challenge is their typical negative temperature dependence on thermal conductivity (TDTC) due to the mismatch in thermal expansion between the polymer and fillers, creating voids at the interfaces. Inspired by the hierarchical structure of snakeskin, where rigid scales and a soft intergap manage expansion, we designed a segregated structure by coating a high-expansion high impact polystyrene (HIPS)/graphite (Gt) composite with a copper alloy. We hypothesize that the Cu alloy restricts the thermal expansion of HIPS/Gt while forming a pseudoconductive network, enhancing TDTC and thermal conductivity (TC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!