Higher cognitive ability is associated with being more physically active. Much less is known about the associations between cognitive ability and sedentary behavior. Ours is the first study to examine whether historic and contemporaneous cognitive ability predicts objectively measured sedentary behavior in older age. Participants were drawn from 3 cohorts (Lothian Birth Cohort, 1936 [LBC1936] [n = 271]; and 2 West of Scotland Twenty-07 cohorts: 1950s [n = 310] and 1930s [n = 119]). Regression models were used to assess the associations between a range of cognitive tests measured at different points in the life course, with sedentary behavior in older age recorded over 7 days. Prior simple reaction time (RT) was significantly related to later sedentary time in the youngest, Twenty-07 1950s cohort (p = .04). The relationship was nonsignificant after controlling for long-standing illness or employment status, or after correcting for multiple comparisons in the initial model. None of the cognitive measures were related to sedentary behavior in either of the 2 older cohorts (LBC1936, Twenty-07 1930s). There was no association between any of the cognitive tests and the number of sit-to-stand transitions in any of the 3 cohorts. The meta-analytic estimates for the measures of simple and choice RT that were identical in all cohorts (n = 700) were also not significant. In conclusion, we found no evidence that objectively measured sedentary time in older adults is associated with measures of cognitive ability at different time points in life, including cognitive change from childhood to older age. (PsycINFO Database Record

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5900579PMC
http://dx.doi.org/10.1037/pag0000221DOI Listing

Publication Analysis

Top Keywords

cognitive ability
20
sedentary behavior
20
objectively measured
12
measured sedentary
12
behavior older
12
older age
12
cognitive
9
older cohorts
8
cognitive tests
8
points life
8

Similar Publications

Background: This review explores virtual reality (VR) and exercise simulator-based interventions for individuals with attention-deficit/hyperactivity disorder (ADHD). Past research indicates that both VR and simulator-based interventions enhance cognitive functions, such as executive function and memory, though their impacts on attention vary.

Objective: This study aimed to contribute to the ongoing scientific discourse on integrating technology-driven interventions into the management and evaluation of ADHD.

View Article and Find Full Text PDF

Abdominal LIPUS Stimulation Prevents Cognitive Decline in Hind Limb Unloaded Mice by Regulating Gut Microbiota.

Mol Neurobiol

January 2025

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

Weightlessness usually causes disruption of the gut microbiota and impairs cognitive function. There is a close connection between gut microbiota and neurological diseases. Low-intensity pulsed ultrasound (LIPUS) has a beneficial effect on reducing intestinal inflammation.

View Article and Find Full Text PDF

Family Size across the Life Course and Cognitive Decline in Older Mexican Adults.

J Gerontol B Psychol Sci Soc Sci

January 2025

College of Health Solutions, Arizona State University, Phoenix, AZ, USA.

Objectives: A growing body of research has identified associations between family size and cognition in older adults. These studies largely focus on older adults' own fertility history instead of sibship size, defined as one's number of siblings. Sibship size may impact cognitive development during early childhood, creating differences that may persist into late-life.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nano-sized membranous particles that are secreted by various cell types and play a critical role in intercellular communication. Their unique properties and remarkable ability to deliver bioactive cargo to target cells have made them promising tools in the treatment of various diseases, including Alzheimer's disease (AD). AD is a devastating neurodegenerative disease characterized by progressive cognitive decline and neuropathological hallmarks, such as amyloid-beta plaques and neurofibrillary tangles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!