Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: This study aimed to determine the feasibility of combining high-frequency ultrasound imaging, automated insertion, and force sensing to yield more information about cochlear implant insertion dynamics.
Methods: An apparatus was developed combining these aspects along with software to control implant and imaging probe positions. Decalcified unfixed human cochleas were implanted at various speeds, insertion sites, and implant models while imaging near the implant tip throughout insertion and recording force data from the cochlea mounting stage. Ultrasound video data were also captured.
Results: The basilar membrane (BM) was frequently penetrated by the implant in either the mid-basal or lower middle turn. Measurements were also performed of apical BM motion in response to upstream implant movement at varying insertion speeds. Increasing insertion speed resulted in greater BM displacement.
Discussion: Multiple insertions per cochlea increase the volume of data per specimen while also reducing variability due to differences between cochleas. However, to image inside the cochlea with ultrasound, the bone had to be decalcified, which likely had a significant effect upon the response of tissue to contact by the implant. As calcified bone strongly reflects ultrasound, we also found ultrasound imaging to be an excellent method for easily assessing bone decalcification progress.
Conclusion: This technique may be very useful for some studies, although the confounding effects of bone decalcification may make results of other studies too difficult to generalize. The approach could be adapted to other real-time imaging modalities, such as optical coherence tomography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14670100.2018.1460024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!