Cavitation Enhancement Increases the Efficiency and Consistency of Chromatin Fragmentation from Fixed Cells for Downstream Quantitative Applications.

Biochemistry

Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy , The University of North Carolina, Chapel Hill , North Carolina 27599 , United States.

Published: May 2018

One of the most sensitive, time-consuming, and variable steps of chromatin immunoprecipitation (ChIP) is chromatin sonication. Traditionally, this process can take hours to properly sonicate enough chromatin for multiple ChIP assays. Further, the length of sheared DNA is often inconsistent. In order to faithfully measure chemical and structural changes at the chromatin level, sonication needs to be reliable. Thus, chromatin fragmentation by sonication represents a significant bottleneck to downstream quantitative analysis. To improve the consistency and efficiency of chromatin sonication, we developed and tested a cavitation enhancing reagent based on sonically active nanodroplets. Here, we show that nanodroplets increase sonication efficiency by 16-fold and provide more consistent levels of chromatin fragmentation. Using the previously characterized chromatin in vivo assay (CiA) platform, we generated two distinct chromatin states in order to test nanodroplet-assisted sonication sensitivity in measuring post-translational chromatin marks. By comparing euchromatin to chemically induced heterochromatin at the same CiA:Oct4 locus, we quantitatively measure the capability of our new sonication technique to resolve differences in chromatin structure. We confirm that nanodroplet-assisted sonication results are indistinguishable from those of samples processed with traditional sonication in downstream applications. While the processing time for each sample was reduced from 38.4 to 2.3 min, DNA fragment distribution sizes were significantly more consistent with a coefficient of variation 2.7 times lower for samples sonicated in the presence of nanodroplets. In conclusion, sonication utilizing the nanodroplet cavitation enhancement reagent drastically reduces the amount of processing time and provides consistently fragmented chromatin of high quality for downstream applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962036PMC
http://dx.doi.org/10.1021/acs.biochem.8b00075DOI Listing

Publication Analysis

Top Keywords

chromatin
13
chromatin fragmentation
12
sonication
10
cavitation enhancement
8
downstream quantitative
8
chromatin sonication
8
nanodroplet-assisted sonication
8
downstream applications
8
processing time
8
enhancement increases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!