Controlling circularly polarized (CP) states of light is critical to the development of functional devices for key and emerging applications such as display technology and quantum communication, and the compact circular polarization-tunable photon source is one critical element to realize the applications in the chip-scale integrated system. The atomic layers of transition metal dichalcogenides (TMDCs) exhibit intrinsic CP emissions and are potential chiroptical materials for ultrathin CP photon sources. In this work, we demonstrated CP photon sources of TMDCs with device thicknesses approximately 50 nm. CP photoluminescence from the atomic layers of tungsten diselenide (WSe) was precisely controlled with chiral metamolecules (MMs), and the optical chirality of WSe was enhanced more than 4 times by integrating with the MMs. Both the enhanced and reversed circular dichroisms had been achieved. Through integrations of the novel gain material and plasmonic structure which are both low-dimensional, a compact device capable of efficiently manipulating emissions of CP photon was realized. These ultrathin devices are suitable for important applications such as the optical information technology and chip-scale biosensing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b01472DOI Listing

Publication Analysis

Top Keywords

atomic layers
12
tungsten diselenide
8
diselenide wse
8
photon sources
8
circular dichroism
4
dichroism control
4
control tungsten
4
wse atomic
4
layers plasmonic
4
plasmonic metamolecules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!