The Dutch-Finnish Ozone Monitoring Instrument (OMI) is an imaging spectrograph flying on NASA's EOS Aura satellite since July 15, 2004. OMI is primarily used to map trace gas concentrations in the Earth's atmosphere, obtaining mid-resolution (0.4-0.6 nm) UV-VIS (264-504 nm) spectra at multiple (30-60) simultaneous fields of view. Assessed via various approaches that include monitoring of radiances from selected ocean, land, ice and cloud areas, as well as measurements of line profiles in the Solar spectra, the instrument shows low optical degradation and high wavelength stability over the mission lifetime. In the regions relatively free from the slowly unraveling 'row anomaly' the OMI irradiances have degraded by 3-8%, while radiances have changed by 1-2%. The long-term wavelength calibration of the instrument remains stable to 0.005-0.020 nm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893161 | PMC |
http://dx.doi.org/10.5194/amt-2016-420 | DOI Listing |
Environ Sci Technol
January 2025
Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.
Deployment of large numbers of low capital cost sensors to increase the spatial density of air quality measurements enables applications that build on mapping air at neighborhood scales. Effective deployment requires not only low capital costs for observations but also a simultaneous reduction in labor costs. The Berkeley Environmental Air Quality and CO Network (BEACON) is a sensor network measuring O, CO, NO, and NO, particulate matter (PM), and CO at dozens of locations in cities where it is deployed.
View Article and Find Full Text PDFSci Rep
January 2025
Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, 110168, Liaoning, China.
The problem of ground-level ozone (O) pollution has become a global environmental challenge with far-reaching impacts on public health and ecosystems. Effective control of ozone pollution still faces complex challenges from factors such as complex precursor interactions, variable meteorological conditions and atmospheric chemical processes. To address this problem, a convolutional neural network (CNN) model combining the improved particle swarm optimization (IPSO) algorithm and SHAP analysis, called SHAP-IPSO-CNN, is developed in this study, aiming to reveal the key factors affecting ground-level ozone pollution and their interaction mechanisms.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China.
p-Phenylenediamines (PPDs) are widely used as antioxidants in numerous rubber products to prevent or delay oxidation and corrosion. However, their derived quinones (PPD-Qs), generated through reactions with ozone, are ubiquitous in the environment and raise significant health and toxicity concerns. This review summarizes the current state of knowledge on environmental distribution and fate, human exposure, and biological toxicity of PPDs and PPD-Qs, and makes recommendations for future research directions.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. Electronic address:
PNPLA3-I148M genotype is the strongest predictive single-nucleotide polymorphism for liver fat. We examine whether PNPLA3-I148M modifies associations between oxidative gaseous air pollutant exposure (O) with i) liver fat and ii) multi-omics profiles of miRNAs and metabolites linked to liver fat. Participants were 69 young adults (17-22 years) from the Meta-AIR cohort.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China. Electronic address:
In recent years, ozone (O) pollution in many Chinese cities has worsened. Several cities have also experienced incidents where nocturnal O concentrations did not decrease as expected, and instead remained at high levels (above 50 ppb). However, there have been few detailed studies on the causes of these events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!