Despite higher rates of hospitalization and mortality following traumatic brain injury (TBI) in patients over 65 years old, older patients remain underrepresented in drug development studies. Worse outcomes in older individuals compared to younger adults could be attributed to exacerbated injury mechanisms including oxidative stress, inflammation, blood-brain barrier disruption, and bioenergetic dysfunction. Accordingly, pleiotropic treatments are attractive candidates for neuroprotection. Taurine, an endogenous amino acid with antioxidant, anti-inflammatory, anti-apoptotic, osmolytic, and neuromodulator effects, is neuroprotective in adult rats with TBI. However, its effects in the aged brain have not been evaluated. We subjected aged male rats to a unilateral controlled cortical impact injury to the sensorimotor cortex, and randomized them into four treatment groups: saline or 25 mg/kg, 50 mg/kg, or 200 mg/kg i.p. taurine. Treatments were administered 20 min post-injury and daily for 7 days. We assessed sensorimotor function on post-TBI days 1-14 and tissue loss on day 14 using T-weighted magnetic resonance imaging. Experimenters were blinded to the treatment group for the duration of the study. We did not observe neuroprotective effects of taurine on functional impairment or tissue loss in aged rats after TBI. These findings in aged rats are in contrast to previous reports of taurine neuroprotection in younger animals. Advanced age is an important variable for drug development studies in TBI, and further research is required to better understand how aging may influence mechanisms of taurine neuroprotection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186512PMC
http://dx.doi.org/10.1007/s11682-018-9865-5DOI Listing

Publication Analysis

Top Keywords

taurine neuroprotection
12
aged rats
12
traumatic brain
8
brain injury
8
drug development
8
development studies
8
rats tbi
8
tissue loss
8
aged
5
rats
5

Similar Publications

Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test.

View Article and Find Full Text PDF

Trazodone, dibenzoylmethane and tauroursodeoxycholic acid do not prevent motor dysfunction and neurodegeneration in Marinesco-Sjögren syndrome mice.

PLoS One

January 2025

Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

There is no cure for Marinesco-Sjögren syndrome (MSS), a genetic multisystem disease linked to loss-of-function mutations in the SIL1 gene, encoding a BiP co-chaperone. Previously, we showed that the PERK kinase inhibitor GSK2606414 delays cerebellar Purkinje cell (PC) degeneration and the onset of ataxia in the woozy mouse model of MSS. However, GSK2606414 is toxic to the pancreas and does not completely rescue the woozy phenotype.

View Article and Find Full Text PDF

Taurine, an essential amino acid, attenuates rotenone-induced Parkinson's disease in rats by inhibiting alpha-synuclein aggregation and augmenting dopamine release.

Behav Brain Res

March 2025

DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.

Reducing antioxidant levels exacerbates the generation of reactive oxygen/nitrogen species, leading to alpha-synuclein aggregation and the degeneration of dopaminergic neurons. These play a key role in the onset of Parkinson's disease (PD), for which effective treatment remains elusive. This study examined the neuroprotective effects of taurine, an essential β-amino acid with antioxidant and antiinflammation properties, in Swiss male mice exposed to rotenone-induced PD.

View Article and Find Full Text PDF

: Long non-coding RNA taurine-upregulated gene 1 (TUG1) is involved in various cellular processes, but its role in cerebral ischemia-reperfusion injury remains unclear. This study investigated TUG1's role in regulating the nucleocytoplasmic shuttling of human antigen R (HuR), a key apoptosis regulator under ischemic conditions. : CRISPR-Cas9 technology was used to generate TUG1 knockout Sprague Dawley rats to assess TUG1's impact on ischemic injury.

View Article and Find Full Text PDF
Article Synopsis
  • - Severe acute pancreatitis (SAP) is a serious inflammatory condition of the pancreas with limited treatment options, prompting the development of a new nanotherapeutic called pHA@IBNCs to alleviate inflammation and restore intestinal health.
  • - The pHA@IBNCs are formed by combining an antioxidant (EGCG), an anti-inflammatory cytokine (IL-22), and a framework protein (bovine serum albumin), then coated with a modified hyaluronic acid to target damaged cells in the pancreas and intestines.
  • - When administered, the pHA@IBNCs effectively accumulate at inflammation sites, releasing their therapeutic agents in response to the high levels of reactive oxygen species (ROS) present, which helps reduce inflammation and
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!