Acrylamide is neurotoxic, genotoxic, teratogenic and carcinogenic. Its widespread use in various industrial processes leads to environmental contamination. Acrylamidase produced by certain bacteria degrade acrylamide to acrylic acid and ammonia. The present study details the isolation and identification of soil bacterium which could degrade acrylamide. Among the 18 acrylamide-degrading isolates tested, isolate ICTDB921 demonstrated superior acrylamide degradation which was confirmed by HPLC, FTIR and GC-MS. The partial 16S rRNA sequencing confirmed the isolate to be Cupriavidus oxalaticus ICTDB921, which showed highest growth at 60 mM acrylamide, neutral pH and 30 °C. The kinetic model predictions were consistent with experimental results. The acrylamidase from this isolate showed potency at pH (6-8) and temperatures (30-60 °C), with reasonable pH (6-8) and thermal stability (upto 60 °C). The enzyme was stable against most metal ions and amino acids, and also degraded other aliphatic amides, demonstrating its potential in remediation of acrylamide from the environment and food systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2018.04.012 | DOI Listing |
J Hazard Mater
December 2024
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China. Electronic address:
Microplastics (MPs) are widely distributed pollutants in various ecosystems, and biodegradation is a crucial process for removal of MPs from environments. Pearl River Estuary, one of the largest estuaries in China, is an important reservoir for MPs with polyethylene MPs (PE-MPs) as the most abundant MPs. Here, biodegradation of PE-MPs and the potential PE-degrading bacteria in sediments of eight major outlets of Pearl River Estuary were firstly investigated.
View Article and Find Full Text PDFACS Omega
December 2024
Boudreau Lab, Department of Biomolecular Science, School of Pharmacy, University of Mississippi, Faser Hall University, University, Mississippi 38677-1848, United States.
Bacteria have evolved numerous mechanisms to resist metal toxicity, including small-molecule metal chelators (metallophores). This study presents a dual screening methodology to isolate metallophore-producing bacteria from the Carpenter Snow Creek Mining District for potential use in heavy-metal bioremediation. Soil samples were screened on metal-supplemented plates from which colonies were picked onto chrome azurol S (CAS)-dyed plates.
View Article and Find Full Text PDFEnviron Pollut
February 2025
Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an, 710054, PR China.
Microbiol Resour Announc
January 2025
Department of Natural Sciences, Northwest Missouri State University, Maryville, Missouri, USA.
Soil samples taken near the abandoned town of Picher, OK, USA, were used to enrich and isolate bacteria in the presence of cadmium. Isolates reported belong to the genus . Here, we report their permanent draft sequences with an emphasis on genes conferring resistance to cadmium.
View Article and Find Full Text PDFSci Rep
November 2024
Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Low-density polyethylene (LDPE) is a widely used plastic that significantly contributes to environmental pollution, and its biodegradation remains challenging. This study investigates the dynamics of bacterial communities in consortia enriched with LDPE as the sole carbon source. The potential for microbial diversity to adapt to polluted environments underscores its role in bioremediation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!