Bisphenol A (BPA) effects and removal by an alkaliphilic chlorophyta, Picocystis, were assessed. BPA at low concentrations (0-25 mg L) did not inhibit the Picocystis growth and photosynthesis during 5 days of exposure. At higher BPA concentrations (50 and 75 mg L), the growth inhibition did not exceed 43%. The net photosynthetic activity was dramatically reduced at high BPA concentrations while, the PSII activity was less affected. The exposure to increasing BPA concentrations induced an oxidative stress in Picocystis cells, as evidenced by increased malondialdehyde content and the over-expression of antioxidant activities (ascorbate peroxydase, gluthation-S-transferase and catalase). Picocystis exhibited high BPA removal efficiency, reaching 72% and 40% at 25 and 75 mg L BPA. BPA removal was ensured mainly by biodegradation/biotransformation processes. Based on these results, the extended tolerance and the high removal ability of Picocystis make her a promising specie for use in BPA bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2018.04.008DOI Listing

Publication Analysis

Top Keywords

high bpa
12
bpa removal
12
bpa concentrations
12
bpa
10
removal ability
8
picocystis
6
removal
5
bisphenol extremophilic
4
extremophilic microalgal
4
microalgal strain
4

Similar Publications

Bisphenol A and its potential mechanism of action for reproductive toxicity.

Toxicology

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; School of Environmental Studies, Queen's University, Kingston, Canada. Electronic address:

Bisphenol A (BPA) is an organic synthetic chemical used worldwide. Billions of pounds of BPA are produced annually through industrial processes to be used in commercial products, making human exposure to BPA ubiquitous. Concerns have been raised due to the potential adverse health effects of BPA, specifically in vulnerable populations, such as pregnant persons and children.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a high-production-volume plastic chemical, with ∼98% of its usage in China allocated to producing polycarbonate and epoxy resin, and its fugitive release threatens ecosystems. However, knowledge of its anthropogenic cycles, environmental emissions, and ecological risks remains incomplete, hindering effective plastic lifecycle management. Herein, material flow analysis, multimedia environmental modeling, and ecological risk assessment were integrated to comprehensively map BPA dynamics in China.

View Article and Find Full Text PDF

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

The integration of membrane separation with heterogeneous advanced oxidation processes is a prospective strategy for the elimination of contaminants during wastewater treatment. Fe-based catalysts and the green oxidant peracetic acid (PAA) are desirable candidates for the development of catalytic membranes because they are environmentally friendly. However, the construction of catalytic ceramic membranes (CMs) modified with efficient Fe-based catalysts that generate increased amounts of high-valent Fe-O species during PAA activation for the degradation of specific pollutants, especially during instantaneous membrane filtration, remains challenging.

View Article and Find Full Text PDF

Damage mechanisms of bisphenols on the quality of mammalian oocytes.

Hum Reprod

December 2024

Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India.

The extensive use of bisphenols in the plastics industry globally is a major growing concern for human health. Bisphenol compounds are easily leached out from plastic containers to food, beverages, and drinking water and contaminate the natural environment. Daily exposure of bisphenol compounds increases their load and impairs various organs, including the reproductive system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!