Social interaction with a tutor modulates responsiveness of specific auditory neurons in juvenile zebra finches.

Behav Processes

Neuronal Mechanism for Critical Period Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1, Tancha, Onna-son, Okinawa, 904-0495, Japan. Electronic address:

Published: June 2019

Behavioral states of animals, such as observing the behavior of a conspecific, modify signal perception and/or sensations that influence state-dependent higher cognitive behavior, such as learning. Recent studies have shown that neuronal responsiveness to sensory signals is modified when animals are engaged in social interactions with others or in locomotor activities. However, how these changes produce state-dependent differences in higher cognitive function is still largely unknown. Zebra finches, which have served as the premier songbird model, learn to sing from early auditory experiences with tutors. They also learn from playback of recorded songs however, learning can be greatly improved when song models are provided through social communication with tutors (Eales, 1989; Chen et al., 2016). Recently we found a subset of neurons in the higher-level auditory cortex of juvenile zebra finches that exhibit highly selective auditory responses to the tutor song after song learning, suggesting an auditory memory trace of the tutor song (Yanagihara and Yazaki-Sugiyama, 2016). Here we show that auditory responses of these selective neurons became greater when juveniles were paired with their tutors, while responses of non-selective neurons did not change. These results suggest that social interaction modulates cortical activity and might function in state-dependent song learning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.beproc.2018.04.003DOI Listing

Publication Analysis

Top Keywords

zebra finches
12
social interaction
8
juvenile zebra
8
higher cognitive
8
auditory responses
8
tutor song
8
song learning
8
auditory
6
song
5
social
4

Similar Publications

Birds are inherently social creatures that rely on pairing to enhance their well-being. Since many bird species lack obvious physical differences between females and males, sex identification is essential for ensuring their welfare. Additionally, early determination of the sexes of birds is crucial for their breeders, especially considering that most companion birds do not display clear sexual characteristics.

View Article and Find Full Text PDF

The amniote pallium, a vital component of the forebrain, exhibits considerable evolutionary divergence across species and mediates diverse functions, including sensory processing, memory formation, and learning. However, the relationships among pallial subregions in different species remain poorly characterized, particularly regarding the identification of homologous neurons and their transcriptional signatures. In this study, we utilized single-nucleus RNA sequencing to examine over 130 000 nuclei from the macaque ( ) neocortex, complemented by datasets from humans ( ), mice ( ), zebra finches ( ), turtles ( ), and lizards ( s), enabling comprehensive cross-species comparison.

View Article and Find Full Text PDF

Delta-opioid receptors (δ-ORs) are known to be involved in associative learning and modulating motivational states. We wanted to study if they were also involved in naturally-occurring reinforcement learning behaviors such as vocal learning, using the zebra finch model system. Zebra finches learn to vocalize early in development and song learning in males is affected by factors such as the social environment and internal reward, both of which are modulated by endogenous opioids.

View Article and Find Full Text PDF

The accurate and reliable performance of learned vocalizations (e.g., speech and birdsong) modulates the efficacy of communication in humans and songbirds.

View Article and Find Full Text PDF

The anatomical innovation of sound-producing organs, which gives rise to a wide variety of sound signals, is one of the most fundamental factors leading to the explosive speciation of modern birds. Despite being a key clue to resolving the homology of sound-controlling muscles among birds, only few studies have explored the embryonic development of syringeal muscles. Using serial histological sections and immunohistochemistry, we described the three-dimensional anatomy and development of the cartilage, muscle, and innervation pattern of the tracheobronchi in three avian species: domestic fowls, cockatiels, and zebra finches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!