Par-4-dependent p53 up-regulation plays a critical role in thymoquinone-induced cellular senescence in human malignant glioma cells.

Cancer Lett

Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates. Electronic address:

Published: July 2018

Thymoquinone (TQ), the predominant bioactive constituent present in black cumin (Nigella sativa), exerts tumor suppressive activity against a wide variety of cancer cells. Cellular senescence, characterized by stable and long term loss of proliferative capacity, acts as a potent tumor suppressive mechanism. Here, we provide evidence for the first time that TQ suppresses growth of glioma cells by potentially inducing the expression of prostate apoptosis response-4 (Par-4) tumor suppressor protein. In turn, TQ-induced Par-4 expression triggers cellular senescence, as evidenced by increasing cellular size, β-galactosidase staining, G1 phase arrest, and increased expression of senescence markers such as p53, p21, Rb, and decreased expression of lamin B1, cyclin E and cyclin depended kinase-2 (CDK-2). Further, overexpression of Par-4 significantly increases the expression of p53 and its downstream target p21, and increases β-galactosidase positive cells, while siRNA/shRNA mediated-knockdown of Par-4 reverses the TQ-induced effects. Altogether, we describe a novel mechanism of cross talk between Par-4 and p53, that plays a critical role in TQ-induced senescence in human malignant glioma cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2018.04.009DOI Listing

Publication Analysis

Top Keywords

cellular senescence
12
glioma cells
12
plays critical
8
critical role
8
senescence human
8
human malignant
8
malignant glioma
8
tumor suppressive
8
senescence
5
cells
5

Similar Publications

Therapeutic implications and comprehensive insights into cellular senescence and aging in the tumor microenvironment of sarcoma.

Discov Oncol

January 2025

Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.

Sarcoma (SARC), a diverse group of stromal tumors arising from mesenchymal tissues, is often associated with a poor prognosis. Emerging evidence indicates that senescent cells within the tumor microenvironment (TME) significantly contribute to cancer progression and metastasis. Although the influence of senescence on SARC has been partially acknowledged, it has yet to be fully elucidated.

View Article and Find Full Text PDF

Background: The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized.

View Article and Find Full Text PDF

Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease.

Aging Dis

January 2025

The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.

Increased entropy is a common cause of disease and aging. Lifespan entropy is the overall increase in disorder caused by a person over their lifetime. Aging leads to the excessive production of reactive oxygen species (ROS), which damage the antioxidant system and disrupt redox balance.

View Article and Find Full Text PDF

Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression.

View Article and Find Full Text PDF

The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.

Regen Ther

March 2025

Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.

The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!