As a recombinant humanized monoclonal antibody that targets the extracellular region of HER2 tyrosine kinase receptor, trastuzumab (TRAZ) has demonstrated comparable clinical efficacy and improved survival in patients with HER2-positive breast cancer. Nevertheless, the therapeutic potential of TRAZ is often limited due to its frequent resistance to anti-HER2 therapy. Therefore, we investigate the reversal effect of STAT3-specific decoy oligonucleotides (STAT3-decoy ODNs) on TRAZ resistance, which contain the consensus sequence within the targeted gene promoter of STAT3. Considering the shortcomings of poor cellular permeability and rapid degradation in vivo limit the further clinical applications of ODNs, we report here an asymmetric hybrid lipid/polymer vesicles with calcium phosphate as the solid kernel (CaP@HA). Through hyaluronan-mediated CD44 targeting, the constructed vesicles can specifically carry STAT3-decoy ODNs into TRAZ-resistant breast cancer cells and then regulate TRAZ-induced apoptosis. In comparison with the native ones, ODNs packaged with CaP@HA showed significantly increased serum stability, cellular transfection, synergistic cytotoxicity and apoptosis in vitro. The improved TRAZ sensitization is attributed to the blockade of STAT3 signaling as well as the expression of downstream target genes associated with TRAZ resistance. With the synergistic action of STAT3-decoy ODNs loaded CaP@HA, TRAZ inhibited the growth of its resistant breast cancer xenograft dramatically and induced significant tumor cell apoptosis in vivo. These results suggested that CaP@HA mediated targeted delivery of STAT3-decoy ODNs might be a promising new strategy to overcome anti-HER2 resistance in breast cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2018.04.023 | DOI Listing |
Pharm Dev Technol
January 2025
Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.
View Article and Find Full Text PDFJ Med Econ
January 2025
UNESCO-TWAS, The World Academy of Sciences, Trieste, Italy.
Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.
Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.
Int J Surg
January 2025
Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.
View Article and Find Full Text PDFInt J Gen Med
December 2024
Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.
Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!