Telocytes (TCs) are cells with long, thin and moniliform processes called telopodes. These cells have been found in numerous tissues, including the eye choroid and sclera. Lamina fusca (LF), an anatomical structure located at the sclera-choroid junction, has outer fibroblastic lamellae containing cells with long telopodes. The purpose of this study was to evaluate, via transmission electron microscopy, the LF for the presence of endothelial-specific ultrastructural features, such as Weibel-Palade bodies (WPBs), in the residing TCs. We found that the outer fibroblastic layer of LF lacked pigmented cells but contained numerous cells with telopodes. These cells had incomplete or absent basal laminae, were united by focal adhesions and close contacts, and displayed scarce caveolae and shedding vesicles. Within the stromal cells of LF, numerous WPBs in various stages of maturation and vesicular structures, as secretory pods that ensure the exocytosis of WPBs content, were observed. The WPBs content of the cells with telopodes in the LF could indicate either their involvement in vasculogenesis and/or lymphangiogenesis or that they are the P-selectin- and CD63-containing pools that play roles in scleral or choroidal inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2018.03.003DOI Listing

Publication Analysis

Top Keywords

weibel-palade bodies
8
lamina fusca
8
cells
8
cells long
8
telopodes cells
8
cells numerous
8
outer fibroblastic
8
cells telopodes
8
wpbs content
8
telocyte-like cells
4

Similar Publications

von Willebrand factor (vWF) is a large multimeric sialoglycoprotein that plays key roles in normal haemostasis, inflammation regulation, angiogenesis and cancer metastasis in mammals. The gene, protein sequences and functions of vWF in flounder Paralichthys olivaceus (PovWF) were analysed in this study. PovWF possesses an 8550-bp open reading frame (ORF) that encodes a 2849 amino acid protein.

View Article and Find Full Text PDF

Background: von Willebrand disease (VWD) is the most common inherited bleeding disorder caused by quantitative or qualitative defects in von Willebrand factor (VWF). The p.M771V VWF variant leads to a severe bleeding phenotype in homozygous patients.

View Article and Find Full Text PDF

Ras-like (Ral) GTPases play essential regulatory roles in many cellular processes, including exocytosis. Cycling between GDP- and GTP-bound states, Ral GTPases function as molecular switches and regulate effectors, specifically the multi-subunit tethering complex exocyst. Here, we show that Ral isoform RalB controls regulated exocytosis of Weibel-Palade bodies (WPBs), the specialized endothelial secretory granules that store hemostatic protein von Willebrand factor.

View Article and Find Full Text PDF

Endothelial cells deliver a vital contribution to the maintenance of hemostasis by constituting an anatomical as well as functional barrier between the blood and the rest of the body. Apart from the physical barrier function, endothelial cells maintain the hemostatic equilibrium by their pro- and anticoagulant functions. An important part of their procoagulant contribution is the production of von Willebrand factor (VWF), which is a carrier protein for coagulation factor VIII and facilitates the formation of a platelet plug.

View Article and Find Full Text PDF

Von Willebrand disease (VWD) is an inherited bleeding disorder caused by quantitative and qualitative abnormalities of von Willebrand factor (VWF), a multimeric glycoprotein that is the largest of its kind in plasma and is also found in platelet alpha granules and Weibel-Palade bodies of endothelial cells. VWF plays two roles in hemostasis: (1) primary hemostasis via adhesion of platelet GPIb to subendothelial connective tissue and (2) stabilization of coagulation factor VIII. The pathological classification proposed by the International Society of Thrombosis and Haemostasis (ISTH) in 1994 divided VWF into three major categories based on the results of VWF:RCo, VWF:Ag, and multimer analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!