Recent studies have revealed that some responses of fern stomata to environmental signals differ from those of their relatives in seed plants. However, it is unknown whether the biophysical properties of guard cells differ fundamentally between species of both clades. Intracellular micro-electrodes and the fluorescent Ca reporter FURA2 were used to study voltage-dependent cation channels and Ca signals in guard cells of the ferns Polypodium vulgare and Asplenium scolopendrium. Voltage clamp experiments with fern guard cells revealed similar properties of voltage-dependent K channels as found in seed plants. However, fluorescent dyes moved within the fern stomata, from one guard cell to the other, which does not occur in most seed plants. Despite the presence of plasmodesmata, which interconnect fern guard cells, Ca signals could be elicited in each of the cells individually. Based on the common properties of voltage-dependent channels in ferns and seed plants, it is likely that these key transport proteins are conserved in vascular plants. However, the symplastic connections between fern guard cells in mature stomata indicate that the biophysical mechanisms that control stomatal movements differ between ferns and seed plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.15153 | DOI Listing |
BMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Division of Plastic Surgery, Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
Introduction: Hand rejuvenation addresses aging-related changes such as subcutaneous fat loss, skin degradation, and photodamage. Autologous fat transfer (AFT) has emerged as a promising treatment, offering durable volume augmentation and regenerative effects. This study aims to systematically review the evidence on the techniques, outcomes, and complications of AFT for hand rejuvenation.
View Article and Find Full Text PDFPlanta
January 2025
Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China.
Atmospheric fine particulate matter (PM) is the main contributor to Pb accumulation in edible Chinese cabbage leaves in North China. PM-Pb primarily enters leaves via stomatal foliar uptake. However, how PM-Pb is transported and stored within the leaf cells of Chinese cabbage remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the promoter in vegetable pea. In the present study, one novel promoter of which shared high similarity to the -type from other plants, was isolated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!