Research of the human brain metabolism in vivo has largely focused on total glucose use (via fluorodeoxyglucose positron emission tomography) and, until recently, did not examine the use of glucose outside oxidative phosphorylation, which is known as aerobic glycolysis (AG). AG supports important functions including biosynthesis and neuroprotection but decreases dramatically with aging. This multitracer positron emission tomography study evaluated the relationship between AG, total glucose use (CMRGlc), oxygen metabolism (CMRO), tau, and amyloid deposition in 42 individuals, including those at preclinical and symptomatic stages of Alzheimer's disease. Our findings demonstrate that in individuals with amyloid burden, lower AG is associated with higher tau deposition. No such correlation was observed for CMRGlc or CMRO. We suggest that aging-related loss of AG leading to decreased synaptic plasticity and neuroprotection may accelerate tauopathy in individuals with amyloid burden. Longitudinal AG and Alzheimer's disease pathology studies are needed to verify causality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955846PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2018.03.014DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
aerobic glycolysis
8
tau deposition
8
total glucose
8
positron emission
8
emission tomography
8
individuals amyloid
8
amyloid burden
8
glycolysis tau
4
deposition preclinical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!