A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural changes of fibrinogen as a consequence of cirrhosis. | LitMetric

Structural changes of fibrinogen as a consequence of cirrhosis.

Thromb Res

Institute for the Application of Nuclear Energy (INEP), Department of Metabolism, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia. Electronic address:

Published: June 2018

Cirrhosis is a disease which may develop as a consequence of various conditions. In advanced liver disease, blood coagulation can be seriously affected. Portal hypertension, vascular abnormalities and/or a dysbalance in coagulation factors may result in bleeding disorders or in the development of thrombosis. Fibrinogen is the main protein involved in clot formation and wound healing. The aim of this work was to analyse the glycosylation pattern of the isolated fibrinogen molecules by lectin-based protein microarray, together with the carbonylation pattern of the individual fibrinogen chains, possible changes in the molecular secondary and tertiary structure and reactivity with the insulin-like growth factor-binding protein 1 (IGFBP-1) in patients with cirrhosis. The results pointed to an increase in several carbohydrate moieties: tri/tetra-antennary structures, Gal β-1,4 GlcNAc, terminal α-2,3 Sia and α-1,3 Man, and a decrease in core α-1,6 Fuc and bi-antennary galactosylated N-glycans with bisecting GlcNAc. Fibrinogen Aα chain was the most susceptible to carbonylation, followed by the Bβ chain. Cirrhosis induced additional protein carbonylation, mostly on the α chain. Spectrofluorimetry and CD spectrometry detected reduction in the α-helix content, protein unfolding and/or appearance of modified amino acid residues in cirrhosis. The amount of complexes which fibrinogen forms with IGFBP-1, another factor involved in wound healing was significantly greater in patients with cirrhosis than in healthy individuals. A more detailed knowledge of individual molecules in coagulation process may contribute to deeper understanding of coagulopathies and the results of this study offer additional information on the possible mechanisms involved in impaired coagulation due to cirrhosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2018.04.005DOI Listing

Publication Analysis

Top Keywords

wound healing
8
patients cirrhosis
8
cirrhosis
7
fibrinogen
6
protein
5
structural changes
4
changes fibrinogen
4
fibrinogen consequence
4
consequence cirrhosis
4
cirrhosis cirrhosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!