A novel small RNA S042 increases acid tolerance in Lactococcus lactis F44.

Biochem Biophys Res Commun

Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China. Electronic address:

Published: June 2018

Lactococcus lactis, a gram-positive bacterium, encounters various environmental stresses, especially acid stress, during fermentation. Small RNAs (sRNAs) that serve as regulators at post-transcriptional level play important roles in acid stress response. Here, a novel sRNA S042 was identified by RNA-Seq, RT-PCR and Northern blot. The transcription level of s042 was upregulated 2.29-fold under acid stress by Quantitative RT-PCR (qRT-PCR) analysis. Acid tolerance assay showed that overexpressing s042 increased the survival rate of L. lactis F44 and deleting s042 significantly inhibited the viability under acidic conditions. Moreover, the targets were predicted by online software and four genes were chosen as candidates. Among them, argR (arginine regulator) and accD (acetyl-CoA carboxylase carboxyl transferase subunit beta) were validated to be the direct targets activated by S042 through reporter fusion assay. The regulatory mechanism between S042 and its targets was further investigated through Bioinformatics and qRT-PCR. This study served to highlight the role of the novel sRNA S042 in acid resistance of L. lactis and provided new insights into the response mechanism of acid stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.04.069DOI Listing

Publication Analysis

Top Keywords

acid stress
16
s042
8
acid tolerance
8
lactococcus lactis
8
novel srna
8
srna s042
8
acid
7
novel small
4
small rna
4
rna s042
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!