The development of multicellular plants relies on the ability of their cells to exchange solutes, proteins and signalling compounds through plasmodesmata, symplasmic pores in the plant cell wall. The aperture of plasmodesmata is regulated in response to developmental cues or external factors such as pathogen attack. This regulation enables tight control of symplasmic cell-to-cell transport. Here we report on an elegant non-invasive method to quantify the passive movement of protein between selected cells even in deeper tissue layers. The system is based on the fluorescent protein DRONPA-s, which can be switched on and off repeatedly by illumination with different light qualities. Using transgenic 35S::DRONPA-s Arabidopsis thaliana and a confocal microscope it was possible to activate DRONPA-s fluorescence in selected cells of the root meristem. This enabled us to compare movement of DRONPA-s from the activated cells into the respective neighbouring cells. Our analyses showed that pericycle cells display the highest efflux capacity with a good lateral connectivity. In contrast, root cap cells showed the lowest efflux of DRONPA-s. Plasmodesmata of quiescent centre cells mediated a stronger efflux into columella cells than into stele initials. To simplify measurements of fluorescence intensity in a complex tissue we developed software that allows simultaneous analyses of fluorescence intensities of several neighbouring cells. Our DRONPA-s system generates reproducible data and is a valuable tool for studying symplasmic connectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.13918 | DOI Listing |
Clin Chem Lab Med
January 2025
Section of Clinical Biochemistry, University of Verona, Verona, Italy.
Plast Reconstr Surg
December 2024
Copenhagen University Hospital, Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen, Denmark.
Background: Capsular contracture is a frequent and severe complication following breast implant surgery. Although several theories on the pathophysiology exist, the exact molecular mechanisms remain unclear. This study aimed to identify the specific genes, signaling pathways, and immune cells associated with capsular contracture.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
December 2024
From the Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
Background: Red blood cell (RBC) aggregation can be initiated by calcium and tissue factor, which may independently contribute to microvascular and macrovascular thrombosis after injury and transfusion. Previous studies have demonstrated that increased blood storage duration may contribute to thrombotic events. The aims of this study were to first determine the effect of blood product components, age, and hematocrit (HCT) on the aggregability of RBCs, followed by measurement of RBC aggregability in two specific injury models including traumatic brain injury (TBI) and hemorrhagic shock.
View Article and Find Full Text PDFJ Immunother
October 2024
Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China.
Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.
View Article and Find Full Text PDFHepatology
October 2024
Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA.
The liver is a highly regenerative organ capable of significant proliferation and remodeling during homeostasis and injury responses. Experiments of nature in rare genetic diseases have illustrated that healthy hepatocytes may have a selective advantage, outcompete diseased cells, and result in extensive liver replacement. This observation has given rise to the concept of therapeutic liver repopulation by providing an engineered selective advantage to a subpopulation of beneficial hepatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!