Aiming to minimize the damage caused by river chemical spills, efficient emergency material allocation is critical for an actual emergency rescue decision-making in a quick response. In this study, an emergency material allocation framework based on time-varying supply-demand constraint is developed to allocate emergency material, minimize the emergency response time, and satisfy the dynamic emergency material requirements in post-accident phases dealing with river chemical spills. In this study, the theoretically critical emergency response time is firstly obtained for the emergency material allocation system to select a series of appropriate emergency material warehouses as potential supportive centers. Then, an enumeration method is applied to identify the practically critical emergency response time, the optimum emergency material allocation and replenishment scheme. Finally, the developed framework is applied to a computational experiment based on south-to-north water transfer project in China. The results illustrate that the proposed methodology is a simple and flexible tool for appropriately allocating emergency material to satisfy time-dynamic demands during emergency decision-making. Therefore, the decision-makers can identify an appropriate emergency material allocation scheme in a balance between time-effective and cost-effective objectives under the different emergency pollution conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-1489-1 | DOI Listing |
Nat Commun
January 2025
Department of Physics, Research Centre of Excellence for Organic Electronics and Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong, China.
The artistic and scientific perspectives of the translucent color organic solar cells (OSCs), made with the emerging narrowband nonfullerene acceptors are explored. The translucent color OSCs, comprising a Fabry-Pérot microcavity optical coupling layer, have a power conversion efficiency of >15% and a maximum transparency of >20% for the three primary colors. The performance-color relationship of the translucent color OSCs is analyzed using a combination of high-throughput optical computing and experimental optimization, allowing light with desired color to pass through, while absorbing enough light to generate electricity.
View Article and Find Full Text PDFNat Commun
January 2025
School of Integrated Circuit, Tsinghua University, Beijing, P.R. China.
Lancet
January 2025
Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:
Background: Dermatomyositis is a chronic autoimmune disease with distinctive cutaneous eruptions and muscle weakness, and the pathophysiology is characterised by type I interferon (IFN) dysregulation. This study aims to assess the efficacy, safety, and target engagement of dazukibart, a potent, selective, humanised IgG1 neutralising monoclonal antibody directed against IFNβ, in adults with moderate-to-severe dermatomyositis.
Methods: This multicentre, double-blind, randomised, placebo-controlled, phase 2 trial was conducted at 25 university-based hospitals and outpatient sites in Germany, Hungary, Poland, Spain, and the USA.
Int J Biol Macromol
January 2025
Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:
Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:
Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!