On the use of Parylene C polymer as substrate for peripheral nerve electrodes.

Sci Rep

Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.

Published: April 2018

Parylene C is a highly flexible polymer used in several biomedical implants. Since previous studies have reported valuable biocompatible and manufacturing characteristics for brain and intraneural implants, we tested its suitability as a substrate for peripheral nerve electrodes. We evaluated 1-year-aged in vitro samples, where no chemical differences were observed and only a slight deviation on Young's modulus was found. The foreign body reaction (FBR) to longitudinal Parylene C devices implanted in the rat sciatic nerve for 8 months was characterized. After 2 weeks, a capsule was formed around the device, which continued increasing up to 16 and 32 weeks. Histological analyses revealed two cell types implicated in the FBR: macrophages, in contact with the device, and fibroblasts, localized in the outermost zone after 8 weeks. Molecular analysis of implanted nerves comparing Parylene C and polyimide devices revealed a peak of inflammatory cytokines after 1 day of implant, returning to low levels thereafter. Only an increase of CCL2 and CCL3 was found at chronic time-points for both materials. Although no molecular differences in the FBR to both polymers were found, the thick tissue capsule formed around Parylene C puts some concern on its use as a scaffold for intraneural electrodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899141PMC
http://dx.doi.org/10.1038/s41598-018-24502-zDOI Listing

Publication Analysis

Top Keywords

substrate peripheral
8
peripheral nerve
8
nerve electrodes
8
capsule formed
8
parylene
5
parylene polymer
4
polymer substrate
4
electrodes parylene
4
parylene highly
4
highly flexible
4

Similar Publications

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

The oxomolybdenum complexes Mo1, Mo2 and Mo3, which share a common ONO donor ligand backbone but differ in their peripheral substituents, were explored to study their reactivity in organic transformations in water. The ligand backbones of Mo1 and Mo2 were covalently linked to a methyl group and a single hydrophobic -hexadecyl chain an ether linkage, respectively. The complex Mo3 was found to possess two -hexadecyl chains attached to the ligand backbone a common amine-N.

View Article and Find Full Text PDF

The Type III Intermediate Filament Protein Peripherin Regulates Lysosomal Degradation Activity and Autophagy.

Int J Mol Sci

January 2025

Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy.

Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and for the transport to late endosomes and lysosomes, such as RAB7A and AP-3, although little is known about its role in the endocytic pathway. Here, we show that peripherin silencing affects lysosomal abundance but also positioning, causing the redistribution of lysosomes from the perinuclear area to the cell periphery.

View Article and Find Full Text PDF

[T-cell large granular lymphocytic leukemia and Felty's syndrome in rheumatoid arthritis].

Z Rheumatol

January 2025

Medizinische Klinik 2, Schwerpunkt Rheumatologie/Klinische Immunologie, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Deutschland.

Neutropenia in rheumatoid arthritis (RA) is a problem that often needs to be addressed. Side effects of basic antirheumatic treatment, infections or substrate deficiencies are common causes; however, T‑cell large granular lymphocytic (T-LGL) leukemia, a mature T‑cell neoplasm, can also lead to autoimmune cytopenia. The T‑LGL leukemia can be associated not only with RA but also with other autoimmune diseases or neoplasms.

View Article and Find Full Text PDF

The multi-enzyme pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle and plays vital roles in metabolism, energy production, and cellular signaling. Although all components have been individually characterized, the intact PDHc structure remains unclear, hampering our understanding of its composition and dynamical catalytic mechanisms. Here, we report the in-situ architecture of intact mammalian PDHc by cryo-electron tomography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!