Off-target DNA cleavage is a paramount concern when applying CRISPR-Cas9 gene-editing technology to functional genetics and human therapeutic applications. Here, we show that incorporation of next-generation bridged nucleic acids (2',4'-BNA[N-Me]) as well as locked nucleic acids (LNA) at specific locations in CRISPR-RNAs (crRNAs) broadly reduces off-target DNA cleavage by Cas9 in vitro and in cells by several orders of magnitude. Using single-molecule FRET experiments we show that BNA incorporation slows Cas9 kinetics and improves specificity by inducing a highly dynamic crRNA-DNA duplex for off-target sequences, which shortens dwell time in the cleavage-competent, "zipped" conformation. In addition to describing a robust technique for improving the precision of CRISPR/Cas9-based gene editing, this study illuminates an application of synthetic nucleic acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899152PMC
http://dx.doi.org/10.1038/s41467-018-03927-0DOI Listing

Publication Analysis

Top Keywords

nucleic acids
16
bridged nucleic
8
off-target dna
8
dna cleavage
8
incorporation bridged
4
nucleic
4
acids
4
acids crispr
4
crispr rnas
4
rnas improves
4

Similar Publications

Nanostructured devices have proven useful in a broad range of applications, from diagnosing diseases to discovering and screening new drug molecules. We developed vertical silicon nanopillar (SiNP) arrays for on-chip multiplex capture of selected biomolecules using a light-induced release of the array's selectively captured biomarkers. This platform allows the rapid, reusable and quantitative capture and release of a selection of biomarkers, followed by their downstream analysis.

View Article and Find Full Text PDF

We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest.

View Article and Find Full Text PDF

Pediatric non-alcoholic fatty liver disease (NAFLD) is emerging as a worldwide health concern with the potential to advance to cirrhosis and liver cancer. NAFLD can also directly contribute to heart problems through inflammation and insulin resistance, even in individuals without other risk factors. The pathological mechanisms of NAFLD are linked to functional differences of miRNAs in different biological environments.

View Article and Find Full Text PDF

Isoform-level expression of the constitutive androstane receptor (CAR or NR1I3) transcription factor better predicts the mRNA expression of the cytochrome P450s in human liver samples.

Drug Metab Dispos

January 2025

Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida. Electronic address:

Many factors cause interperson variability in the activity and expression of the cytochrome P450 (CYP) drug-metabolizing enzymes in the liver, leading to variable drug exposure and treatment outcomes. Several liver-enriched transcription factors are associated with CYP expression, with estrogen receptor α (ESR1) and constitutive androstane receptor (CAR or NR1I3) being the 2 top factors. ESR1 and NR1I3 undergo extensive alternative splicing that results in numerous splice isoforms, but how these splice isoforms associate with CYP expression is unknown.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) therapeutics represent an emerging class of pharmacotherapy with the potential to address previously hard-to-treat diseases. Currently approved siRNA therapeutics include lipid nanoparticle-encapsulated siRNA and tri-N-acetylated galactosamine-conjugated siRNA. These siRNA therapeutics exhibit distinct pharmacokinetic characteristics and unique absorption, distribution, metabolism, and elimination (ADME) properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!