The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148437PMC
http://dx.doi.org/10.1038/s41375-018-0097-xDOI Listing

Publication Analysis

Top Keywords

hedgehog pathway
24
pathway mutations
16
hedgehog signaling
12
hedgehog
10
mutations
8
drive oncogenic
8
oncogenic transformation
8
cells induced
8
t-all
6
pathway
5

Similar Publications

Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC.

View Article and Find Full Text PDF

The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC) progression is one of the commonest cause of female cancer death. While treatments in clinic includes primary surgery and targeted chemotherapy, curative and survival trends in OC have not significantly improved. Thus, further investigation of the mechanisms regarding OC carcinogenesis and discovery of novel targets is of great importance.

View Article and Find Full Text PDF

Introduction: Primary cilia play an important role in the development of cancer by regulating signaling pathways. Several studies have demonstrated that women with mutations have, on average, 50% fewer ciliated cells compared with general women. However, the role of tubal cilia loss in the development of epithelial ovarian cancer (EOC) remains unclear.

View Article and Find Full Text PDF

Efficacy of Hedgehog Pathway Inhibitors as Adjuvant in Treating Steroid-Refractory Sclerodermatous Chronic Graft-Versus-Host Disease.

J Am Acad Dermatol

January 2025

Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA; Department of Dermatology, Stanford University, Stanford, CA. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!