The discovery that endoplasmic reticulum (ER) luminal chaperones such as GRP78/BiP can escape to the cell surface upon ER stress where they regulate cell signaling, proliferation, apoptosis, and immunity represents a paradigm shift. Toward deciphering the mechanisms, we report here that, upon ER stress, IRE1α binds to and triggers tyrosine kinase SRC activation, leading to ASAP1 phosphorylation and Golgi accumulation of ASAP1 and Arf1-GTP, resulting in KDEL receptor dispersion from the Golgi and suppression of retrograde transport. At the cell surface, GRP78 binds to and acts in concert with a glycosylphosphatidylinositol-anchored protein, CD109, in blocking TGF-β signaling by promoting the routing of the TGF-β receptor to the caveolae, thereby disrupting its binding to and activation of Smad2. Collectively, we uncover a SRC-mediated signaling cascade that leads to the relocalization of ER chaperones to the cell surface and a mechanism whereby GRP78 counteracts the tumor-suppressor effect of TGF-β.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939063PMC
http://dx.doi.org/10.1073/pnas.1714866115DOI Listing

Publication Analysis

Top Keywords

cell surface
16
endoplasmic reticulum
8
chaperones cell
8
tgf-β signaling
8
cell
5
reticulum stress
4
stress activates
4
activates src
4
src relocating
4
relocating chaperones
4

Similar Publications

Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.

View Article and Find Full Text PDF

Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.

View Article and Find Full Text PDF

Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Cell integrity limits ploidy in budding yeast.

G3 (Bethesda)

January 2025

Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!