A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Early non-invasive detection of breast cancer using exhaled breath and urine analysis. | LitMetric

The main focus of this pilot study is to develop a statistical approach that is suitable to model data obtained by different detection methods. The methods used in this study examine the possibility to detect early breast cancer (BC) by exhaled breath and urine samples analysis. Exhaled breath samples were collected from 48 breast cancer patients and 45 healthy women that served as a control group. Urine samples were collected from 37 patients who were diagnosed with breast cancer based on physical or mammography tests prior to any surgery, and from 36 healthy women. Two commercial electronic noses (ENs) were used for the exhaled breath analysis. Urine samples were analyzed using Gas-Chromatography Mass-Spectrometry (GC-MS). Statistical analysis of results is based on an artificial neural network (ANN) obtained following feature extraction and feature selection processes. The model obtained allows classification of breast cancer patients with an accuracy of 95.2% ± 7.7% using data of one EN, and an accuracy of 85% for the other EN and for urine samples. The developed statistical analysis method enables accurate classification of patients as healthy or with BC based on simple non-invasive exhaled breath and a urine sample analysis. This study demonstrates that available commercial ENs can be used, provided that the data analysis is carried out using an appropriate scheme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2018.04.002DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
exhaled breath
20
urine samples
16
breath urine
12
cancer exhaled
8
samples collected
8
cancer patients
8
patients healthy
8
healthy women
8
statistical analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!