Forced degradation is a method of studying the stability of pharmaceuticals in order to design stable formulations and predict drug product shelf life. Traditional methods of reaction and analysis usually take multiple days, and include LC-UV and LC-MS product analysis. In this study, the reaction/analysis sequence was accelerated to be completed within minutes using Leidenfrost droplets as reactors (acceleration factor: 23-188) and nanoelectrospray ionization MS analysis. The Leidenfrost droplets underwent the same reactions as seen in traditional bulk solution experiments for three chemical degradations studied. This combined method of accelerated reaction and analysis has the potential to be extended to forced degradation of other pharmaceuticals and to drug formulations. Control of reaction rate and yield is achieved by manipulating droplet size, levitation time and whether or not make-up solvent is added. Evidence is provided that interfacial effects contribute to rate acceleration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201801176DOI Listing

Publication Analysis

Top Keywords

forced degradation
12
degradation pharmaceuticals
8
reaction analysis
8
leidenfrost droplets
8
accelerated forced
4
pharmaceuticals levitated
4
levitated microdroplet
4
microdroplet reactors
4
reactors forced
4
degradation method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!