The research of hydrogels has been increasingly focused on designing an effective energy dissipation structure in recent years. Here, we report a kind of novel supramolecular cross-linker, which was formed by self-assembling amphiphilic block copolymers with guest groups at the end and vinyl-functionalized cyclodextrin (CD) through host-guest interaction. These cross-linkers could dissipate energy effectively since they combined multiple sacrificial mechanisms across multiscales through physical interactions. The resulted hydrogel shows distinguishing mechanical properties (fracture toughness of 2.68 ± 0.69 MJ/m, tension strength of up to 475 kPa, uniaxial stretch over 2100%), remarkable fatigue resistance, and thermal- and light-responsive behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b01410 | DOI Listing |
Small
December 2024
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH)SO solution.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria.
The integration of three-dimensional (3D) printed resin denture teeth represents a significant advancement in digital dentistry. This study aims to assess the ability of 3D-printed denture teeth to withstand chipping and indirect tensile fractures, comparing them with conventionally manufactured resin denture teeth. Four groups, each comprising 30 specimens, were examined: Group 1 featured 3D-printed denture teeth (NextDent, 3D Systems, Soesterberg, The Netherlands), while the others included commercially obtained Ivostar Shade, SpofaDent Plus, and Major Super Lux teeth.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China; Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, PR China. Electronic address:
Since hydrogels are conductive, easily engineered, and sufficiently flexible to imitate the mechanical properties of human skin, they are seen as potential options for wearable strain sensors. However, it is still a great challenge to prepare a hydrogel through simple and straightforward methods that integrate excellent stretchability, ionic conductivity, toughness, self-adhesion, and self-healing. Herein, an acrylamide/3-acrylamide phenylboronic acid cross-linked network is modified to produce a semi-interpenetrating cross-linked hydrogel in just one easy step by adding starch.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Development of multi-component blends to prepare high-performance polymer materials is still challenging, and is a key technology for mechanical recycling of waste plastics. However, a multi-phase compatibilizer is prerequisite to create high-performance multi-component blends. In this study, POE--(MAH--St) and SEBS--(MAH--St) compatibilizers are prepared via melt-grafting of maleic anhydride (MAH) and styrene (St) dual monomers to polyolefin elastomer (POE) and poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS), respectively.
View Article and Find Full Text PDFJ Food Sci
December 2024
Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India.
Bee pollen is a nutrient-rich super food, but its rigid dual-layered structure limits nutrient release and absorption. The outer exine, composed of stress-resistant sporopollenin, and the inner intine, consisting of cellulose and pectin, form a barrier to digestive breakdown. This study investigates the potential of green techniques, specifically supercritical fluid extraction and ultrasonication, to disaggregate pollen cell walls, enhancing its bioavailability and maximizing nutrient utilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!