Super Tough, Ultrastretchable Hydrogel with Multistimuli Responsiveness.

ACS Appl Mater Interfaces

State Key Laboratory of Polymer Materials Engineering (Sichuan University) , Polymer Research Institute of Sichuan University, Chengdu 610065 , China.

Published: May 2018

The research of hydrogels has been increasingly focused on designing an effective energy dissipation structure in recent years. Here, we report a kind of novel supramolecular cross-linker, which was formed by self-assembling amphiphilic block copolymers with guest groups at the end and vinyl-functionalized cyclodextrin (CD) through host-guest interaction. These cross-linkers could dissipate energy effectively since they combined multiple sacrificial mechanisms across multiscales through physical interactions. The resulted hydrogel shows distinguishing mechanical properties (fracture toughness of 2.68 ± 0.69 MJ/m, tension strength of up to 475 kPa, uniaxial stretch over 2100%), remarkable fatigue resistance, and thermal- and light-responsive behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b01410DOI Listing

Publication Analysis

Top Keywords

super tough
4
tough ultrastretchable
4
ultrastretchable hydrogel
4
hydrogel multistimuli
4
multistimuli responsiveness
4
responsiveness hydrogels
4
hydrogels increasingly
4
increasingly focused
4
focused designing
4
designing effective
4

Similar Publications

Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH)SO solution.

View Article and Find Full Text PDF

The integration of three-dimensional (3D) printed resin denture teeth represents a significant advancement in digital dentistry. This study aims to assess the ability of 3D-printed denture teeth to withstand chipping and indirect tensile fractures, comparing them with conventionally manufactured resin denture teeth. Four groups, each comprising 30 specimens, were examined: Group 1 featured 3D-printed denture teeth (NextDent, 3D Systems, Soesterberg, The Netherlands), while the others included commercially obtained Ivostar Shade, SpofaDent Plus, and Major Super Lux teeth.

View Article and Find Full Text PDF

Design of super stretchability, rapid self-healing, and self-adhesion hydrogel based on starch for wearable strain sensors.

Carbohydr Polym

January 2025

College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China; Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, PR China. Electronic address:

Since hydrogels are conductive, easily engineered, and sufficiently flexible to imitate the mechanical properties of human skin, they are seen as potential options for wearable strain sensors. However, it is still a great challenge to prepare a hydrogel through simple and straightforward methods that integrate excellent stretchability, ionic conductivity, toughness, self-adhesion, and self-healing. Herein, an acrylamide/3-acrylamide phenylboronic acid cross-linked network is modified to produce a semi-interpenetrating cross-linked hydrogel in just one easy step by adding starch.

View Article and Find Full Text PDF

Super Tough PA6/PP/ABS/SEBS Blends Compatibilized by a Combination of Multi-Phase Compatibilizers.

Materials (Basel)

November 2024

Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Development of multi-component blends to prepare high-performance polymer materials is still challenging, and is a key technology for mechanical recycling of waste plastics. However, a multi-phase compatibilizer is prerequisite to create high-performance multi-component blends. In this study, POE--(MAH--St) and SEBS--(MAH--St) compatibilizers are prepared via melt-grafting of maleic anhydride (MAH) and styrene (St) dual monomers to polyolefin elastomer (POE) and poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS), respectively.

View Article and Find Full Text PDF

Bee pollen is a nutrient-rich super food, but its rigid dual-layered structure limits nutrient release and absorption. The outer exine, composed of stress-resistant sporopollenin, and the inner intine, consisting of cellulose and pectin, form a barrier to digestive breakdown. This study investigates the potential of green techniques, specifically supercritical fluid extraction and ultrasonication, to disaggregate pollen cell walls, enhancing its bioavailability and maximizing nutrient utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!