Carbon monoxide (CO) is both a substance hazardous to health and a side product of a number of industrial processes, such as methanol steam reforming and large-scale oxidation reactions. The separation of CO from nitrogen (N) in industrial processes is considered to be difficult because of the similarities of their electronic structures, sizes, and physicochemical properties (e.g., boiling points). Carbon monoxide is also a major poison in fuel cells because of its adsorption onto the active sites of the catalysts. It is therefore of the utmost economic importance to discover new materials that enable effective CO capture and release under mild conditions. However, methods to specifically absorb and easily release CO in the presence of contaminants, such as water, nitrogen, carbon dioxide, and oxygen, at ambient temperature are not available. Here, we report the simple and versatile fabrication of a new class of hybrid materials that allows capture and release of carbon monoxide under mild conditions. We found that carborane-containing metal complexes encapsulated in networks made of poly(dimethylsiloxane) react with CO, even when immersed in water, leading to dramatic color and infrared signature changes. Furthermore, we found that the CO can be easily released from the materials by simply dipping the networks into an organic solvent for less than 1 min, at ambient temperature and pressure, which not only offers a straightforward recycling method, but also a new method for the "on-demand" release of carbon monoxide. We illustrated the utilization of the on-demand release of CO from the networks by carrying out a carbonylation reaction on an electron-deficient metal complex that led to the formation of the CO-adduct, with concomitant recycling of the gel. We anticipate that our sponge-like materials and scalable methodology will open up new avenues for the storage, transport, and controlled release of CO, the silent killer and a major industrial poison.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b01776 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Low-temperature proton exchange membrane fuel cells (PEMFCs) reuqire highly pure hydrogen gas due to their extreme sensitivity to carbon monoxide (CO) contamination, which poses a challenge for using cost-effective reformed hydrogen sources. To address this issue, we have developed a surface modification strategy by applying a 0.5-0.
View Article and Find Full Text PDFEur Rev Med Pharmacol Sci
December 2024
Department of Orthopedic Surgery and Traumatology, Cantonal Hospital Fribourg, University of Fribourg, Fribourg, Switzerland.
Objective: The detrimental effects of cigarette smoking on overall health are well-documented, with nicotine and carbon monoxide contributing to peripheral vasoconstriction and impaired oxygen delivery to tissues. This study reviews the impact of smoking on wound and bone healing, specifically in foot and ankle surgery, given its significant role as a modifiable risk factor for complications in orthopedic procedures.
Materials And Methods: A systematic literature review was conducted in May 2024 following PRISMA guidelines.
Nat Commun
January 2025
Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.
A potential non-precious metal catalyst for oxygen reduction reaction should contain metal-N moieties. However, most of the current strategies to regulate the distances between neighboring metal sites are not pre-designed but depend on the probability by tuning the metal loading or the support. Herein, we report a general method for the synthesis of neighboring metal-N moieties (metal = Fe, Cu, Co, Ni, Zn, and Mn) via an interfacial-fixing strategy.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States.
Tissue repair is often impaired in pathological states, highlighting the need for innovative wound-healing technologies. This study introduces composite hyaluronic acid gas-entrapping materials (GEMs) delivering carbon monoxide (CO) to promote wound healing in pigs. These composite materials facilitate burst release followed by sustained release of CO over 48 h.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Indian Health Service, Traverse City, Michigan.
Landscapers are exposed to noise, carbon monoxide (CO), respirable dust, and respirable crystalline silica (RCS) generated from the tools they use. Although engineering controls are available to reduce these exposures, no previous study has evaluated chronic exposures to landscapers in different work settings and compared exposures from landscaping tools with and without engineering controls. This field study of workers in the landscaping services industry documented the occupational exposures of 80 participants at 11 varied worksites to noise, CO, respirable dust, and RCS using personal breathing zone sampling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!