An Er:Yb:LuSiO microchip laser was constructed by placing a 1.2 mm thick, Y-cut Er:Yb:LuSiO microchip between two 1.2 mm thick sapphire crystals, in which input and output mirrors were directly deposited onto one face of each crystal. End-pumped by a continuous-wave 975.4 nm diode laser, a 1564 nm multi-longitudinal-mode laser with a maximum output power of 940 mW and slope efficiency of 20% was realized at an absorbed pump power of 5.5 W when the transmission of output mirror was 2.2%. When the transmission of the output mirror was increased to 6%, a 1537 nm single-longitudinal-mode laser with a maximum output power of 440 mW and slope efficiency of 12% was realized at an absorbed pump power of 4.3 W. The results indicate that the Er:Yb:LuSiO crystal is a promising microchip gain medium to realize a single-longitudinal-mode laser.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.43.001643 | DOI Listing |
Micromachines (Basel)
November 2024
Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, 80333 Munich, Germany.
Despite major advances in the field of actuator technology for microsystems, miniaturized microfluidic actuation systems for mobile devices are still not common in the market. We present a micropump concept and an associated mass flow sensor design, which, in combination, have the potential to form the basis for an integrated microfluidic development platform for microfluidic systems in general and microdosing systems in particular. The micropump combines the use of active valves with an electrostatic drive principle for the pump membrane and the valves, respectively.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland.
'Organ-on-a-chip' technology is a promising and rapidly evolving model in biological research. This innovative microfluidic cell culture device was created using a microchip with continuously perfused chambers, populated by living cells arranged to replicate physiological processes at the tissue and organ levels. By consolidating multicellular structures, tissue-tissue interfaces, and physicochemical microenvironments, these microchips can replicate key organ functions.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Moscow, Russia.
Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.
Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.
J Mater Chem B
December 2024
Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
Glutathione (GSH) plays a vital role in the regulation of intracellular functions which alterations in physiological glutathione levels are associated to various diseases. Molecular bioimaging is a sensitive method for GSH detection, but challenges persist in the development of fluorescent probes, mainly concerning long-term tracking of intracellular GSH concentration because of aggregation of molecular probes and their washout in cells. Engineered nanomaterials have shown great promise for increasing the disease diagnosis accuracy.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States.
We are developing a unique protein identification method that consists of generating peptides proteolytically from a single protein molecule (i.e., peptide fingerprints) with peptide detection and identification carried out using nanoscale electrochromatography and label-free resistive pulse sensing (RPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!