An Er:Yb:LuSiO microchip laser was constructed by placing a 1.2 mm thick, Y-cut Er:Yb:LuSiO microchip between two 1.2 mm thick sapphire crystals, in which input and output mirrors were directly deposited onto one face of each crystal. End-pumped by a continuous-wave 975.4 nm diode laser, a 1564 nm multi-longitudinal-mode laser with a maximum output power of 940 mW and slope efficiency of 20% was realized at an absorbed pump power of 5.5 W when the transmission of output mirror was 2.2%. When the transmission of the output mirror was increased to 6%, a 1537 nm single-longitudinal-mode laser with a maximum output power of 440 mW and slope efficiency of 12% was realized at an absorbed pump power of 4.3 W. The results indicate that the Er:Yb:LuSiO crystal is a promising microchip gain medium to realize a single-longitudinal-mode laser.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.001643DOI Listing

Publication Analysis

Top Keywords

eryblusio microchip
12
12 mm thick
8
laser maximum
8
maximum output
8
output power
8
slope efficiency
8
realized absorbed
8
absorbed pump
8
pump power
8
transmission output
8

Similar Publications

Fully Integrated MEMS Micropump and Miniaturized Mass Flow Sensor as Basic Components for a Microdosing System.

Micromachines (Basel)

November 2024

Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, 80333 Munich, Germany.

Despite major advances in the field of actuator technology for microsystems, miniaturized microfluidic actuation systems for mobile devices are still not common in the market. We present a micropump concept and an associated mass flow sensor design, which, in combination, have the potential to form the basis for an integrated microfluidic development platform for microfluidic systems in general and microdosing systems in particular. The micropump combines the use of active valves with an electrostatic drive principle for the pump membrane and the valves, respectively.

View Article and Find Full Text PDF

'Organ-on-a-chip' technology is a promising and rapidly evolving model in biological research. This innovative microfluidic cell culture device was created using a microchip with continuously perfused chambers, populated by living cells arranged to replicate physiological processes at the tissue and organ levels. By consolidating multicellular structures, tissue-tissue interfaces, and physicochemical microenvironments, these microchips can replicate key organ functions.

View Article and Find Full Text PDF

Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.

Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.

View Article and Find Full Text PDF

Glutathione (GSH) plays a vital role in the regulation of intracellular functions which alterations in physiological glutathione levels are associated to various diseases. Molecular bioimaging is a sensitive method for GSH detection, but challenges persist in the development of fluorescent probes, mainly concerning long-term tracking of intracellular GSH concentration because of aggregation of molecular probes and their washout in cells. Engineered nanomaterials have shown great promise for increasing the disease diagnosis accuracy.

View Article and Find Full Text PDF

We are developing a unique protein identification method that consists of generating peptides proteolytically from a single protein molecule (i.e., peptide fingerprints) with peptide detection and identification carried out using nanoscale electrochromatography and label-free resistive pulse sensing (RPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!